In this video, a PhD Student from the University of Maine explains how ice cores are used to study global climate change.

In this video, students learn how scientific surveys of wildlife are performed at a site in Yosemite, California. These surveys, in conjunction with studies from the early 1900s, provide evidence that animal populations in Yosemite have shifted over time in response to rising temperatures.

This short video describes how the compression of Antarctic snow into ice captures air from past atmospheres. It shows how ice cores are drilled from the Antarctic ice and prepared for shipment and subsequent analysis.

This in-depth interactive slideshow about how climate models work is embedded with a lot of background information. It also describes some of the projected climate change impacts to key sectors such as water, ecosystems, food, coasts, health. (scroll down page for interactive)

This audio slideshow examines the changes in the ecosystem that will occur to the Arctic due to increasing temperatures and disappearing sea ice.

Students consider why the observed atmospheric CO2 increase rate is only ~60% of the CO2 loading rate due to fossil fuel combustion. They develop a box-model to simulate the atmospheric CO2 increase during the industrial era and compare it to the historic observations of atmospheric CO2 concentrations. The model is then used to forecast future concentrations of atmospheric CO2 during the next century.

This is a video overview of the history of climate science, with the goal of debunking the idea that in the 1970s, climate scientists were predicting global cooling.

In this video, a spokesperson for the National Climactic Data Center describes the methods of using satellites (originally designed for observing changes in the weather) to study changes in climate from decade to decade. The video clearly illustrates the value of satellite data and begins to address connections between weather and climate.

In this activity, students reconstruct past climates using lake varves as a proxy to interpret long-term climate patterns. Students use data from sediment cores to understand annual sediment deposition and how it relates to weather and climate patterns.

This video is simple in its appearance, but it contains a wealth of relevant information about global climate models.

Pages