This as a 2-part activity in which students study the properties of CO2 in a lab and then use web resources to research different types of carbon capture. A video lecture accompanies the activity.

This multi-week project begins with a measurement of baseline consumptive behavior followed by three weeks of working to reduce the use of water, energy, high-impact foods, and other materials. The assignment uses an Excel spreadsheet that calculates direct energy and water use as well as indirect CO2 and water use associated with food consumption. After completing the project, students understand that they do indeed play a role in the big picture. They also learn that making small changes to their lifestyles is not difficult and they can easily reduce their personal impact on the environment.

In this lesson, students complete a Myers-Briggs Type Inventory of their personality type as an introductory step to understanding what green jobs might suit their personal styles. From the information on this online tool, they look at different green jobs to explore possible careers.

In this activity, students learn about the pros and cons of co-firing woody biomass fuels with coal to produce electricity.

Students explore their own Ecological Footprint in the context of how many Earths it would take if everyone used the same amount of resources they did. They compare this to the Ecological Footprint of individuals in other parts of the world and to the Ecological footprint of a family member when they were the student's age.

This activity leads students through a sequence of learning steps that highlight the embedded energy that is necessary to produce various types of food. Students start by thinking through the components of a basic meal and are later asked to review the necessary energy to produce different types of protein.

The activity follows a progression that examines the CO2 content of various gases, explores the changes in the atmospheric levels of CO2 from 1958 to 2000 from the Mauna Loa Keeling curve, and the relationship between CO2 and temperature over the past 160,000 years. This provides a foundation for examining individuals' input of CO2 to the atmosphere and how to reduce it.

This is the ninth and final lesson in a series of lessons about climate change. This lesson focuses on the various activities that humans can do to mitigate the effects of climate change. This includes information on current and predicted CO2 emission scenarios across the globe, alternative energy sources, and how people are currently responding to climate change. Importantly, this lesson is motivating in showing students that they can make a difference.

In this activity, students conduct an energy audit to determine how much carbon dioxide their family is releasing into the atmosphere and then make recommendations for minimizing their family's carbon footprint.

In this hands-on activity, students explore whether rooftop gardens are a viable option for combating the urban heat island effect. The guiding question is: Can rooftop gardens reduce the temperature inside and outside of houses?