This three-panel figure is an infographic showing how carbon and oxygen isotope ratios, temperature, and carbonate sediments have changed during the Palaeocene-Eocene Thermal Maximum. The figure caption provides sources to scientific articles from which this data was derived. A graphic visualization from the Intergovernmental Panel on Climate Change shows the rapid decrease in carbon isotope ratios that is indicative of a large increase in the atmospheric greenhouse gases CO2 and CH4, which was coincident with approximately 5C of global warming.

This NBC Learn video features climate scientists doing their research on Mt. Kilimanjaro to study the climate of the past. The scientists put the recently observed changes on the glacier into perspective by comparing past climate fluctuations, stressing that the current observed rate of change is unprecedented.
Note: you will need to scroll down the Changing Planet video page to get to this video.

This static graph of changes in CO2 concentrations goes back 400,000 years, showing the dramatic spike in recent years.

In this video, a PhD Student from the University of Maine explains how ice cores are used to study global climate change.

In this activity, students reconstruct past climates using lake varves as a proxy to interpret long-term climate patterns. Students use data from sediment cores to understand annual sediment deposition and how it relates to weather and climate patterns.

This video, from ClimateCentral, features a team of scientists from the Northern Greenland Eemian Ice Drilling Project who study atmospheric air bubbles trapped in an ice core. This work highlights a period in Greenland's ice sheet which began about 130,000 years ago and lasted about 10,000 years; a period known as the Eemian. The air bubbles from the ancient atmosphere reveal what happened with climate change over that period of time.

This interactive visualization describes how climatologists obtain and interpret evidence from the Greenland Ice Sheet in an effort to piece together a picture of Earth's distant climate history. Resource describes how glaciers form and how they can be used to collect ancient atmospheric data. The issues analyzed in the data collection are particularly good in showing how science is done in the field.

This short video, adapted from NOVA, explains how Earth's position relative to the Sun might be responsible for the dramatic shift in the climate of what is now the Saharan nation of Djibouti.

This video segment, from the 'Earth: The Operators' Manual' featuring climate expert Richard Alley, shows how ice cores stored at the National Ice Core Lab provide evidence that ancient ice contains records of Earth's past climate - specifically carbon dioxide and temperature.

This video segment describes climate data collection from Greenland ice cores that indicate Earth's climate can change abruptly over a single decade rather than over thousands of years. The narrator describes how Earth has undergone dramatic climate shifts in relatively short spans of time prior to 8000 years ago. The video and accompanying essay provide explanations of the differences between weather and climate and how the climate itself had been unstable in the past, with wide variations in temperature occurring over decadal timescales.

Pages