This video explains how scientists construct computer-generated climate models to forecast weather, understand climate, and project climate change. It discusses how different types of climate models can be used and how scientists use computers to build these models.

This video documents the scope of changes in the Arctic, focusing on the impacts of warming and climate change on the indigenous Inuit population.

In this JAVA-based interactive modeling activity, students are introduced to the concepts of mass balance, flow rates, and equilibrium using a simple water bucket model. Students can vary flow rate into the bucket, initial water level in the bucket, and residence time of water in the bucket. After running the model, the bucket's water level as a function of time is presented graphically and in tabular form.

Students consider why the observed atmospheric CO2 increase rate is only ~60% of the CO2 loading rate due to fossil fuel combustion. They develop a box-model to simulate the atmospheric CO2 increase during the industrial era and compare it to the historic observations of atmospheric CO2 concentrations. The model is then used to forecast future concentrations of atmospheric CO2 during the next century.

This activity uses geophysical and geochemical data to determine climate in Central America during the recent past and to explore the link between climate (wet periods and drought) and population growth/demise among the Maya. Students use ocean drilling data to interpret climate and to consider the influence of climate on the Mayan civilization.

This activity includes a set of slides with embedded images, animations, and interactives that students use to investigate extreme weather events. This is module 8 of a Satellite Meteorology course.

This audio slideshow/video describes the Greenland ice sheet and the difficulties in getting scientific measurements at the interface between the ice and the ocean. It features the work of a researcher from Woods Hole Oceanographic Institute researcher. She gives a personal account of her work on the recent increase in melting of glaciers, the challenges of working in Greenland, and the reasons why so many climate scientists are looking there for answers to questions about climate change.

In this video, a team of paleontologists, paleobotanists, soil scientists, and other researchers take to the field in Wyoming's Bighorn Basin to document how the climate, plants, and animals there changed during the Paleocene- Eocene Thermal Maximum (PETM) when a sudden, enormous influx of carbon flooded the ocean and atmosphere for reasons that are still unclear to scientists. The PTEM is used as an analog to the current warming occurring. The scientists' research may help inform our understanding of current increases in carbon in the atmosphere and ocean and the resulting impact on ecosystems. Supporting materials include essay and interactive overview of animals that existed in the Basin after the PETM event.

In this activity, students explore how, in New England, the timing of color change and leaf drop of deciduous trees is changing.

In this video segment, two students discuss the greenhouse effect and visit with research scientists at Biosphere 2 in Arizona, who research the effects of global climate change on organisms in a controlled facility. Their current research (as of 2002) focuses on the response to increased quantities of CO2 in a number of different model ecosystems.

Pages