This interactive displays how climate variables are changing over time (temperature, CO2, Arctic sea ice, solar flux, etc.) in graphical form. Students can examine data over the last 20 years or archived data.

In this lesson, students examine and interpret varied observational datasets and are asked to determine whether the data supports or does not support the statement: climate change is occurring in Colorado.

This high-resolution narrated video shows levels and movements of CO2 globally through the course of a year.

In this activity, students reconstruct past climates using lake varves as a proxy to interpret long-term climate patterns. Students use data from sediment cores to understand annual sediment deposition and how it relates to weather and climate patterns.

In this activity, students work with climate data from the tropical Pacific Ocean to understand how sea-surface temperature and atmospheric pressure affect precipitation in the tropical Pacific in a case study format.

This video, from ClimateCentral, features a team of scientists from the Northern Greenland Eemian Ice Drilling Project (NEEM), who study atmospheric air bubbles trapped in an ice core from a period in Greenland's ice sheet which began about 130,000 years ago and lasted about 10,000 years; a period known as the Eemian. The air bubbles from the ancient atmosphere - all aligned on the same time scale - reveal what happened with climate change over that period of time.

This short video, adapted from NOVA, explains how Earth's position relative to the Sun might be responsible for the dramatic shift in the climate of what is now the Saharan nation of Djibouti.

This short video, is the fifth in the National Academies Climate Change, Lines of Evidence series. It focuses on greenhouse gases, climate forcing (natural and human-caused), and global energy balance.

This animation depicts global surface warming as simulated by NCAR's Community Climate System Model (CCSM) Version 3. It shows the temperature anomalies relative to the end of the 19th century, both over the entire globe and as a global average. The model shows the temporary cooling effects during 5 major volcanic eruptions and estimates future temperature trends based on different amounts of greenhouse gas emissions.

In this video scientists discuss possible rates of sea level rise, storms and resulting damage, rising temperatures and melting ice, and their collective effects on ecosystems.

Pages