This video features University of Wisconsin-Madison researcher John Magnuson, who studies the ecology of freshwater systems. He explains the difference between weather and climate using data on ice cover from Lake Mendota in Madison, WI. Analysis of the data indicates a long-term trend that can be connected to climate change.

This video features research conducted at University of Colorado's Institute of Arctic and Alpine Research, which studies isotopes of hydrogen trapped in ice cores to understand climate changes in the past.

This is a multi-faceted activity that offers students a variety of opportunities to learn about permafrost through an important sink and source of greenhouse gas (methane), about which most students living in lower latitudes know little.

This short video clip summarizes NOAA's annual State of the Climate Report for 2009. It presents a comprehensive summary of Earth's climate in 2009 and establishes the last decade as the warmest on record. Reduced extent of Arctic sea ice, glacier volume, and snow cover reflect the effects of rising global temperature.

In this video segment, a team of scientists seeks evidence to support their hypothesis that atmospheric warming -- either now or in the past -- may explain why water has formed beneath the West Antarctic ice sheet, causing ice streams that flow much more quickly than the rest of the ice sheet. This phenomenon has important implications for potential sea level rise.

This activity includes a set of slides with embedded images, animations, and interactives that students use to investigate extreme weather events. This is module 8 of a Satellite Meteorology course.

This video is part of the Climate Science in a Nutshell series. This short, animated video looks at evidence of a rapidly warming planet. It discusses how air bubbles in ice cores can be used to estimate Earth's average air temperature for thousands of years and how direct measurements document air temperatures from 1880.

This interactive displays how climate variables are changing over time (temperature, CO2, Arctic sea ice, solar flux, etc.) in graphical form. Students can examine data over the last 20 years or archived data.

In this video, a PhD Student from the University of Maine explains how ice cores are used to study global climate change.

This activity is part of the Antarctica's Climate Secrets flexhibit. Students learn about and create models of glaciers and ice sheets, ice shelves, icebergs and sea ice.