This short animated video provides a general overview of the role of carbon dioxide in supporting the Greenhouse Effect.

This activity is a greenhouse-effect-in-a-bottle experiment. The lesson includes readings from NEED.org and an inquiry lab measuring the effect of carbon dioxide and temperature change in an enclosed environment.

In this activity students learn how Earth's energy balance is regulating climate. This activity is lesson 4 in the nine-lesson module Visualizing and Understanding the Science of Climate Change.

This interactive contains four animated slides that introduce the greenhouse effect. An additional animation offers to 'explore more'.

This lesson covers different aspects of the major greenhouse gases - water vapor, carbon dioxide, methane, nitrous oxides and CFCs - including some of the ways in which human activities are affecting the atmospheric concentrations of these key greenhouse gases. This is lesson six in a nine-lesson module about climate change.

In this activity, students learn about the relationship between greenhouse gases and global warming through a simple teacher demo or hands-on lab activity. Everyday materials are used: beakers, baking soda, vinegar, candle, thermometers, heat source such as a goose-necked lamp, etc. Students shine a light onto three thermometers: a control, an upside down beaker w/ a thermometer and air, and a beaker in which CO2 had been poured.

In this activity, students compare carbon dioxide data from Mauna Loa Observatory, Barrow, Alaska, and the South Pole over the past 40 years. Students use the data to learn about what causes short-term and long-term changes in atmospheric carbon dioxide. This activity makes extensive use of Excel.

Students gain experience using a spreadsheet and working with others to decide how to conduct their model 'experiments' with the NASA GEEBITT (Global Equilibrium Energy Balance Interactive Tinker Toy). This activity helps students become more familiar with the physical processes that made Earth's early climate so different from that of today. Students also acquire first-hand experience with a limitation in modeling, specifically, parameterization of critical processes.

This visualization shows the molecular interaction of infrared radiation with various gases in the atmosphere. Focus is on the interaction with C02 molecules and resultant warming of the troposphere.

This animation depicts the carbon cycle in a fashion that is suited for younger audiences. The video discusses how carbon enters and exits the environment through both natural and human-driven ways.

Pages