Students gain experience using a spreadsheet and working with others to decide how to conduct their model 'experiments' with the NASA GEEBITT (Global Equilibrium Energy Balance Interactive Tinker Toy). This activity helps students become more familiar with the physical processes that made Earth's early climate so different from that of today. Students also acquire first-hand experience with a limitation in modeling, specifically, parameterization of critical processes.

This animated video outlines Earth's energy. The video presents a progression from identifying the different energy systems to the differences between external and internal energy sources and how that energy is cycled and used.

In this activity students download satellite images displaying land surface temperature, snow cover, and reflected short wave radiation data from the NASA Earth Observation (NEO) Web site. They then explore and animate these images using the free tool ImageJ and utilize the Web-based analysis tools built into NEO to observe, graph, and analyze the relationships among these three variables.

In this short video, atmospheric scientist Scott Denning gives a candid and entertaining explanation of how greenhouse gases in Earth's atmosphere warm our planet.

In this activity, learners use the STELLA box modeling software to determine Earth's temperature based on incoming solar radiation and outgoing terrestrial radiation. Starting with a simple black body model, the exercise gradually adds complexity by incorporating albedo, then a 1-layer atmosphere, then a 2-layer atmosphere, and finally a complex atmosphere with latent and sensible heat fluxes. With each step, students compare the modeled surface temperature to Earth's actual surface temperature, thereby providing a check on how well each increasingly complex model captures the physics of the actual system.

This activity introduces students to different forms of energy, energy transformations, energy storage, and the flow of energy through systems. Students learn that most energy can be traced back to nuclear fusion on the sun.

Students perform a lab to explore how the color of materials at Earth's surface affect the amount of warming. Topics covered include developing a hypothesis, collecting data, and making interpretations to explain why dark-colored materials become hotter.

This is an animation from the US Environmental Protection Agency's Students Guide to Global Climate Change, one of a series of web pages and videos about the basics of the greenhouse effect.

This activity teaches students about the albedo of surfaces and how it relates to the ice-albedo feedback effect. During an experiment, students observe the albedo of two different colored surfaces by measuring the temperature change of a white and black surface under a lamp.

This short video, is the fifth in the National Academies Climate Change, Lines of Evidence series. It focuses on greenhouse gases, climate forcing (natural and human-caused), and global energy balance.

Pages