This activity explores the urban heat island effect. Students access student-collected surface temperature data provided through the GLOBE program and analyze the data with My World GIS.

One of a suite of online climate interactive simulations, this Greenhouse Gas Simulator uses the bathtub model to demonstrate how atmospheric concentrations of CO2 will continue to rise unless they are lowered to match the amount of CO2 that can be removed through natural processes.

C-Learn is a simplified version of a climate simulator. Its primary purpose is to help users understand the long-term climate effects (CO2 concentrations, global temperature, sea level rise) of various customized actions to reduce fossil fuel CO2 emissions, reduce deforestation, and grow more trees. Students can ask multiple, customized what-if questions and understand why the system reacts as it does.

This interactive visualization allows users to compare projections of Wisconsin's average annual temperature with the actual changes of the last five decades. Text on the web page encourages students to think about the challenges Wisconsin could face if these changes occur.

The Climate Momentum Simulation allows users to quickly compare the resulting sea level rise, temperature change, atmospheric CO2, and global CO2 emissions from six different policy options projected out to 2100.

Students consider why the observed atmospheric CO2 increase rate is only ~60% of the CO2 loading rate due to fossil fuel combustion. They develop a box-model to simulate the atmospheric CO2 increase during the industrial era and compare it to the historic observations of atmospheric CO2 concentrations. The model is then used to forecast future concentrations of atmospheric CO2 during the next century.

This is an interactive webtool that allows the user to choose a state or country and both assess how climate has changed over time and project what future changes are predicted to occur in a given area.