In this interactive simulation, students can explore global CO2 emissions displayed by different continents/countries and plotted based on the GDP. A map view is also accessible.

This is a simulation that illustrates how temperature will be affected by global CO2 emission trajectories. It addresses the issue that even if global emissions begin to decrease, the atmospheric concentration of CO2 will continue to increase, resulting in increased global temperatures.

This is an interactive webtool that allows the user to choose a state or country and both assess how climate has changed over time and project what future changes are predicted to occur in a given area.

This simulation provides scenarios for exploring the principles of climate dynamics from a multi-disciplinary perspective. Interconnections among climate issues, public stakeholders, and the governance spheres are investigated through creative simulations designed to help students understand international climate change negotiations.

This activity explores the urban heat island effect. Students access student-collected surface temperature data provided through the GLOBE program and analyze the data with My World GIS.

Students explore the increase in atmospheric carbon dioxide over the past 40 years with an interactive online model. They use the model and observations to estimate present emission rates and emission growth rates. The model is then used to estimate future levels of carbon dioxide using different future emission scenarios. These different scenarios are then linked by students to climate model predictions also used by the Intergovernmental Panel on Climate Change.

One of a suite of online climate interactive simulations, this Greenhouse Gas Simulator uses the bathtub model to demonstrate how atmospheric concentrations of CO2 will continue to rise unless they are lowered to match the amount of CO2 that can be removed through natural processes.

C-Learn is a simplified version of the C-ROADS simulator. Its primary purpose is to help users understand the long-term climate effects (CO2 concentrations, global temperature, sea level rise) of various customized actions to reduce fossil fuel CO2 emissions, reduce deforestation, and grow more trees. Students can ask multiple, customized what-if questions and understand why the system reacts as it does.

This interactive visualization allows users to compare future projections of Wisconsin's average annual temperature with the actual changes of the last five decades. Text on the web page encourages students to think about the challenges Wisconsin could face if these changes occur.

The Climate Momentum Simulation allows users to quickly compare the resulting sea level rise, temperature change, atmospheric CO2, and global CO2 emissions from six different policy options projected out to 2100.