This is a debate-style learning activity in which student teams learn about energy sources and are then assigned to represent the different energy sources. Working cooperatively, students develop arguments on the pros and cons of their source over the others.

In this activity, students conduct a life cycle assessment of energy used and produced in ethanol production, and a life cycle assessment of carbon dioxide used and produced in ethanol production.

The activity follows a progression that examines the CO2 content of various gases, explores the changes in the atmospheric levels of CO2 from 1958 to 2000 from the Mauna Loa Keeling curve, and the relationship between CO2 and temperature over the past 160,000 years. This provides a foundation for examining individuals' input of CO2 to the atmosphere and how to reduce it.

This activity focuses on applying analytic tools such as pie charts and bar graphs to gain a better understanding of practical energy use issues. Also provides experience with how different types of data collected affect the outcome of statistical visualization tools.

Student teams design and build solar water heating devices that mimic those used in residences to capture energy in the form of solar radiation and convert it to thermal energy. In this activity, students gain a better understanding of the three different types of heat transfer, each of which plays a role in the solar water heater design. Once the model devices are constructed, students perform efficiency calculations and compare designs.

This activity from the Department of Energy provides background information about solar ovens and instructions on building a simple model solar cooker.

This video is from the Energy 101 video series. It explains the process for converting micro-algae into fuel and makes the case that algae-based biofuels hold enormous potential for helping reduce our dependence on imported oil.

Students conduct an energy audit to determine how much carbon dioxide their family is releasing into the atmosphere and then make recommendations for minimizing their family's carbon footprint. Students are specifically asked to understand the units of power and energy to determine the cost of running various household appliances. Finding the amount of carbon dioxide emitted for different types of energy and determining ways of reducing carbon dioxide output is the outcome of the lesson.

This series of informative graphics provide a regional overview of US energy resources.

Students investigate passive solar building design with a focus on heating. Insulation, window placement, thermal mass, surface colors, and site orientation are addressed in the background materials and design preparation. Students test their projects for thermal gains and losses during a simulated day and night then compare designs with other teams for suggestions for improvements.