This is a team-based activity that teaches students about the scale of the greenhouse gas problem and the technologies that already exist which can dramatically reduce carbon emissions. Students select carbon-cutting strategies to construct a carbon mitigation profile, filling in the wedges of a climate stabilization triangle.

In this short activity, students or groups are tasked to make concept sketches that track the source of electrical power as far back as they can conceive. The concept sketches reveal students' prior conceptions of the power grid and energy mix, and lead naturally into a lesson or discussion about energy resources and power production.

This activity comes at the beginning of a sequence of activities in an energy module. Students observe the transfer of solar energy to different appliances with a solar cell and then they investigate the effect of using different solar sources to supply energy to appliances.

In this activity, students explore real data about renewable energy potential in their state using a mapping tool developed by NREL (National Renewable Energy Laboratory) to investigate the best locations for wind energy, solar energy, hydropower, geothermal energy, and biomass.

In this activity, students become familiar with the online Renewable Energy Living Lab interface and access its real-world solar energy data to evaluate the potential for solar generation in various U.S. locations.

In this activity, students play the role of energy consultants to a CEO, assessing and documenting the feasibility, cost, and environmental impact of installing solar power on 4 company facilities with the same design but in different geographical locations.

In this activity, students work through the process of evaluating the feasibility of photovoltaic solar power in 4 different US cities.

In this activity, students use Google Earth to investigate a variety of renewable energy sources and select sites within the United States that would be appropriate for projects based on those sources.

In this hands-on activity, students examine how the orientation of a photovoltaic (PV) panel -- relative to the position of the sun -- affects the energy-efficiency of the panel.

This activity is a learning game in which student teams are each assigned a different energy source. Working cooperatively, students use their reading, brainstorming, and organizational skills to hide the identity of their team's energy source while trying to guess which energy sources the other teams represent.

Pages