This video describes why tropical ice cores are important and provide different information than polar ice cores, why getting them now is important (they are disappearing), and how scientists get them. The work of glaciologist Lonnie Thompson is featured, with a focus on his work collecting cores of ice from high mountain glaciers that contain significant data about past climate change.

In this activity, students work with climate data from the tropical Pacific Ocean to understand how sea-surface temperature and atmospheric pressure affect precipitation in the tropical Pacific in a case study format.

This activity uses geophysical and geochemical data to determine climate in Central America during the recent past and to explore the link between climate (wet periods and drought) and population growth/demise among the Maya. Students use ocean drilling data to interpret climate and to consider the influence of climate on the Mayan civilization.

An interactive simulation of Earth's seasonal dynamics that includes the axial tilt and other aspects of Earth's annual cycle.

This is part of a larger lab from the University of Nebraska at Lincoln:

This is an activity designed to allow students who have been exposed to the El NiÃo-Southern Oscillation to analyze the La NiÃa mechanism and predict its outcomes in a case study format.

This Motions of the Sun Lab is an interactive applet from the University of Nebraska-Lincoln Astronomy Applet project.

This is a sequence of 5 classroom activities focusing on the El NiÃo climate variability. The activities increase in complexity and student-directedness. The focus of the activities is on accessing and manipulating real data to help students understand El NiÃo as an interaction of Earth systems.

This classroom resource is a combination of 3 visualizations and accompanying text that illustrate how 3 key natural phenomena - cyclical changes in solar energy output, major volcanic eruptions over the last century, and El Nino/Nina cycles - are insufficient to explain recent global warming.

This animation demonstrates the changing declination of the sun with a time-lapse animation. It shows how the shadow of a building changes over the course of a year as the declination of the sun changes.

This static graph of changes in CO2 concentrations goes back 400,000 years, showing the dramatic spike in recent years.