An interactive visualization tool to examine geocentric seasonal and latitudinal variability in solar energy reaching Earth's surface.

An interactive simulation of Earth's seasonal dynamics that includes the axial tilt and other aspects of Earth's annual cycle.

This is part of a larger lab from the University of Nebraska at Lincoln:

This interactive exposes students to Earth's atmospheric gases of oxygen, carbon dioxide, and ozone. As the user manipulates the interactive to increase or decrease the concentration of each gas, explanations and images are provided that explain and visualize what the Earth would be like in each scenario.

This simulation allows the user to project CO2 sources and sinks by adjusting the points on a graph and then running the simulation to see projections for the impact on atmospheric CO2 and global temperatures.

In this activity, students conduct a life cycle assessment of energy used and produced in ethanol production, and a life cycle assessment of carbon dioxide used and produced in ethanol production.

This is a simulation that illustrates how temperature will be affected by global CO2 emission trajectories. It addresses the issue that even if global emissions begin to decrease, the atmospheric concentration of CO2 will continue to increase, resulting in increased global temperatures.

This is an animated interactive simulation that illustrates differential solar heating on a surface in full sunlight versus in the shade.

In this short but effective demonstration/experiment, students investigate how thermal expansion of water might affect sea level.

An interactive simulation that allows the user to adjust mountain snowfall and temperature to see the glacier grow and shrink in response.

This interactive visualization depicts sea surface temperatures (SST) and SST anomalies from 1885 to 2007. Learn all about SST and why SST data are highly valuable to ocean and atmospheric scientists. Understand the difference between what actual SST readings can reveal about local weather conditions and how variations from normalâcalled anomaliesâcan help scientists identify warming and cooling trends and make predictions about the effects of global climate change. Discover the relationships between SST and marine life, sea ice formation, local and global weather events, and sea level.