This activity introduces students to different forms of energy, energy transformations, energy storage, and the flow of energy through systems. Students learn that most energy can be traced back to nuclear fusion on the sun.

In this worksheet-based activity, students review global visualizations of incoming sunlight and surface temperature and discuss seasonal change. Students use the visualizations to support inquiry on the differences in seasonal change in the Northern and Southern Hemispheres and how land and water absorb and release heat differently. The activity culminates in an argument about why one hemisphere experiences warmer summers although it receives less total solar energy.

Students perform a lab to explore how the color of materials at Earth's surface affect the amount of warming. Topics covered include developing a hypothesis, collecting data, and making interpretations to explain why dark-colored materials become hotter.

This NASA video discusses the impacts of the sun's energy, Earth's reflectance, and greenhouse gases on the Earth System.

This animated video outlines Earth's energy. The video presents a progression from identifying the different energy systems to the differences between external and internal energy sources and how that energy is cycled and used.

A simple click-through animation from Scripps Institute's Earthguide program breaks the complex topic of the global energy balance into separate concepts. Slides describe the different pathways for incoming and outgoing radiation.

In this short video, atmospheric scientist Scott Denning gives a candid and entertaining explanation of how greenhouse gases in Earth's atmosphere warm our planet.

This is an animation from the US Environmental Protection Agency's Students Guide to Global Climate Change, one of a series of web pages and videos about the basics of the greenhouse effect.

Students explore the carbon cycle and the relationship between atmospheric carbon dioxide concentrations and temperature. Students create and compare graphs of carbon dioxide and temperature data from one local (Mauna Loa, Hawaii) meteorological station and one NASA global data set. These graphs, as well as a global vegetation map and an atmospheric wind circulation patterns diagram, are used as evidence to support the scientific claims they develop through their analysis and interpretation.

This activity teaches students about the albedo of surfaces and how it relates to the ice-albedo feedback effect. During an experiment, students observe the albedo of two different colored surfaces by measuring the temperature change of a white and black surface under a lamp.

Pages