This activity involves plotting and comparing monthly data on atmospheric C02 concentrations over two years, as recorded in Mauna Loa and the South Pole, and postulating reasons for differences in their seasonal patterns. Longer-term data is then examined for both sites to see if seasonal variations from one site to the other carry over into longer term trends.

Students first learn about the complexities of Earth's climate system and the different factors contributing to Earth's energy balance. Then, students categorize the factors that influence climate as warming or cooling factors. Finally, students design art pieces to depict the science behind Earth's climate system and share these artistic creations with families and communities.

In this activity, students work with climate data from the tropical Pacific Ocean to understand how sea-surface temperature and atmospheric pressure affect precipitation in the tropical Pacific in a case study format.

This activity allows students to make El Nino in a container, but it might work better as a teacher demonstration. The introduction and information provided describe El Nino, its processes and its effects on weather elsewhere in the world.

In this activity, students work in groups, plotting carbon dioxide concentrations over time on overheads and estimating the rate of change over five years. Stacked together, the overheads for the whole class show an increase on carbon dioxide over five years and annual variation driven by photosynthesis. This exercise enables students to practice basic quantitative skills and understand how important sampling intervals can be when studying changes over time. A goal is to see how small sample size may give incomplete picture of data.

In this activity, students examine climate variability in the North Atlantic associated with the North Atlantic Oscillation (NOA) in a case study format.

In this activity, students explore the way that human activities have changed the way that carbon is distributed in Earth's atmosphere, lithosphere, biosphere and hydrosphere.

This multi-part activity introduces users to normal seasonal sea surface temperature (SST) variation as well as extreme variation, as in the case of El NiÃo and La NiÃa events, in the equatorial Pacific Ocean. Via a THREDDS server, users learn how to download seasonal SST data for the years 1982 to 1998. Using a geographic information system (GIS), they visualize and analyze that data, looking for the tell-tale SST signature of El NiÃo and La NiÃa events that occurred during that time period. At the end, students analyze a season of their own choosing to determine if an El NiÃo or La NiÃa SST pattern emerged in that year's data.

This is an activity designed to allow students who have been exposed to the El NiÃo-Southern Oscillation to analyze the La NiÃa mechanism and predict its outcomes in a case study format.

In this activity, students explore factors that have caused the rise in global temperature over the last century. Educators have the opportunity to assess how modeling activities (the game), analogies (the cake), and mathematical models (graphs) develop and change student mental models.

Pages