In this activity students learn how Earth's energy balance is regulating climate. This activity is lesson 4 in the nine-lesson module Visualizing and Understanding the Science of Climate Change.

This activity allows students to make El Nino in a container, but it might work better as a teacher demonstration. The introduction and information provided describe El Nino, its processes and its effects on weather elsewhere in the world.

This is a multi-faceted activity that offers students a variety of opportunities to learn about permafrost and the role of methane in thawing permafrost.

This lesson sequence guides students to learn about the geography and the unique characteristics of the Arctic, including vegetation, and people who live there. Students use Google Earth to explore the Arctic and learn about meteorological observations in the Arctic, including collecting their own data in hands-on experiments. This is the first part of a three-part curriculum about Arctic climate.

This model of ocean-atmosphere interaction shows how carbon dioxide gas diffuses into water, causing the water to become more acidic. The video demonstration and instruction provide an explanation of the chemistry behind this change and the consequences of ocean acidification. The video also addresses a misconception about how ocean acidification affects shelled organisms.

In this classroom activity, students access sea surface temperature and wind speed data from a NASA site, plot and compare data, draw conclusions about surface current and sea surface temperature, and link their gained understanding to concerns about global climate change.

In this activity, students work in groups, plotting carbon dioxide concentrations over time on overheads and estimating the rate of change over five years. Stacked together, the overheads for the whole class show an increase on carbon dioxide over five years and annual variation driven by photosynthesis. This exercise enables students to practice basic quantitative skills and understand how important sampling intervals can be when studying changes over time. A goal is to see how small sample size may give incomplete picture of data.

In this activity, students use authentic Arctic climate data to unravel some causes and effects related to the seasonal melting of the snowpack and to further understand albedo.

This is a series of 6 guided-inquiry activities that examine data and models that climate scientists use to attempt to answer the question of Earth's future climate.

In this activity, students explore the role of combustion in the carbon cycle. They learn that carbon flows among reservoirs on Earth through processes such as respiration, photosynthesis, combustion, and decomposition, and that combustion of fossil fuels is causing an imbalance. This activity is one in a series of 9 activities.