In this activity, learners use the STELLA box modeling software to determine Earth's temperature based on incoming solar radiation and outgoing terrestrial radiation. Starting with a simple black body model, the exercise gradually adds complexity by incorporating albedo, then a 1-layer atmosphere, then a 2-layer atmosphere, and finally a complex atmosphere with latent and sensible heat fluxes. With each step, students compare the modeled surface temperature to Earth's actual surface temperature, thereby providing a check on how well each increasingly complex model captures the physics of the actual system.

These animations depict the three major Milankovitch Cycles that impact global climate, visually demonstrating the definitions of eccentricity, obliquity, and precession, and their ranges of variation and timing on Earth.

This three-part, hands-on investigation explores how sunlight's angle of incidence at Earth's surface impacts the amount of solar radiation received in a given area. The activity is supported by PowerPoint slides and background information.

This animation depicts real-time wind speed and direction at selected heights above Earth's surface, ocean surface currents, and ocean surface temperatures and anomalies.

This short video uses animated imagery from satellite remote sensing systems to illustrate that Earth is a complex, evolving body characterized by ceaseless change. Adapted from NASA, this visualization helps explain why understanding Earth as an integrated system of components and processes is essential to science education.

This qualitative graphic illustrates the various factors that affect the amount of solar radiation hitting or being absorbed by Earth's surface such as aerosols, clouds, and albedo.

In this activity students learn how Earth's energy balance is regulating climate. This activity is lesson 4 in the nine-lesson module Visualizing and Understanding the Science of Climate Change.

An interactive that illustrates the relationships between the axial tilt of the Earth, latitude, and temperature. Several data sets (including temperature, Sun-Earth distance, daylight hours) can be generated.

This interactive visualization adapted from NASA and the U.S. Geological Survey illustrates the concept of albedo, which is the measure of how much solar radiation is reflected from Earth's surface.

An interactive simulation of Earth's seasonal dynamics that includes the axial tilt and other aspects of Earth's annual cycle.

This is part of a larger lab from the University of Nebraska at Lincoln: http://astro.unl.edu/naap/motion1/motion1.html

Pages