In this set of activities, students learn about impacts of drought through news videos of communities facing serious water shortages, analyze drought data and models, and research and evaluate potential solutions. This lesson works well as a component within a larger unit on climate change, its impacts, and ways to address the resulting issues.

This activity allows students to examine graphs of sea level rise data as well as global temperature data. They calculate amounts and rates of sea level rise for various time periods and answer questions discussing the data. They then compare the sea level rise trends to those in a graph of temperature data.

In this activity, students estimate the drop in sea level during glacial maxima, when ice and snow in high latitudes and altitudes resulted in lower sea levels. Students estimate the surface area of the world's oceans, use ice volume data to approximate how much sea levels dropped, and determine the sea-level rise that would occur if the remaining ice melted.

This activity has students examine the misconception that there is no scientific consensus on climate change. Students explore temperature data and report their conclusions to the class. Then students examine techniques of science denial and examine a claim about scientific consensus.

This activity engages learners in examining data pertaining to the disappearing glaciers in Glacier National Park. After calculating percentage change of the number of glaciers from 1850 (150) to 1968 (50) and 2009 (26), students move on to the main glacier-monitoring content of the module--area vs. time data for the Grinnell Glacier, one of 26 glaciers that remain in the park. Using a second-order polynomial (quadratic function) fitted to the data, they extrapolate to estimate when there will be no Grinnell Glacier remaining (illustrating the relevance of the question mark in the title of the module).

In this activity, students examine the effects of hurricanes on sea surface temperature using NASA data. They examine authentic sea surface temperature data to explore how hurricanes extract heat energy from the ocean surface.

Using real data from NASA's GRACE satellites, students will track water mass changes in the U.S., data that measures changes in ice, surface and especially groundwater. The background information includes an animated video about where water exists and how it moves around Earth, as well as short video clips to introduce the GRACE mission and explain how satellites collect data. Students will estimate water resources using heat-map data, create a line graph for a specific location, then assess trends and discuss implications.

This activity illustrates the importance of water resources and how changes in climate are closely linked to changes in water resources. The activity could fit into many parts of a science curriculum, for example a unit on water could be connected to climate change.

In this activity learners investigate the link between ocean temperatures and hurricane intensity, analyze instrumental and historical data, and explore possible future changes.

This sequence of activities using real-world data to explain the importance of coral reefs and the relationship of coral reef health to the surrounding environment. Unit includes five activities.

This Earth Exploration Toolbook chapter uses ArcGIS and climate data from the National Center for Atmospheric Research (NCAR) Climate Change Scenarios GIS Data Portal to help users learn the basics of GIS-based climate modeling. The five-part exercise involves calculating summer average temperatures for the present day and future climate modeled output, visually comparing the temperature differences for the two model runs, and creating a temperature anomaly map to highlight air temperature increases or decreases around the world.

Pages