This is a collection of five short videos that show how climate change is affecting fishing, native populations and access for the oil and gas industry in the Arctic. The videos include personal reflections by writers Andrew C. Revkin and Simon Romero, scientists, and residents about their experience of the impacts of the climate change in the Arctic.

This is an interactive website that provides descriptive information and data related to ten key climate indicators. These climate indicators and related resources show global patterns and data that are intuitive and compelling teaching tools.

This video highlights a variety of climate change research initiatives from scientists at the University of Colorado, Boulder. It describes the changing dynamics of Antarctic ice sheets and the impacts of reduced Arctic sea ice. The video illustrates the excitement of this research through interviews and video clips of scientists in the field.

Bell Telephone Science Hour produced this video in 1958, explaining how the production of CO2 from factories and automobiles is causing the atmosphere to warm, melting the polar ice caps, and causing the sea level to rise.

This learning activity explores the concept of resiliency. It allows students to make city planning decisions and then employs a game to test their resilience decisions against potential impacts from severe weather, climate change, and natural hazards.

The Climate Momentum Simulation allows users to quickly compare the resulting sea level rise, temperature change, atmospheric CO2, and global CO2 emissions from six different policy options projected out to 2100.

Students use long term sea-level rise data set to create models and compare short-term trends to long-term trends. They then determine whether sea-level rise is occurring based on the data.

C-ROADS is a simplified version of a climate simulator. Its primary purpose is to help users understand the long-term climate effects (CO2 concentrations, global temperature, sea level rise) of various customized actions to reduce fossil fuel CO2 emissions, reduce deforestation, and grow more trees. Students can ask multiple, customized what-if questions and understand why the system reacts as it does.

This activity allows students to examine graphs of sea level rise data as well as global temperature data. They calculate amounts and rates of sea level rise for various time periods and answer questions discussing the data. They then compare the sea level rise trends to those in a graph of temperature data.

In this activity, students make and manipulate physical shoreline models to discover the features of resilient shorelines and to critically evaluate the impacts of rising seas. Students will use NOAA's Sea Level Rise Viewer to observe a coastal area of interest and predict the consequences of sea level rise on people, the environment, and the economy. Though the curriculum references North Carolina, this lesson will work for all coastal areas.

Pages