This video provides an overview of changes happening in the Arctic.

This activity uses two interactive simulations to illustrate climate change, 1) at the micro/molecular level - modeling the impact of increasing concentrations of greenhouse gases in the atmosphere on surface temperature and 2) at the macro level - modeling changes in glacier thickness and flow as a result of rising surface temperature.

An interactive simulation that allows the user to adjust mountain snowfall and temperature to see the glacier grow and shrink in response.

This simulation was created by a student for students based on the Gaia Theory using the simulation of Daisyworld. Students will learn the concept of albedo and be able to discuss implications of changes in the system.

The Greenland 2014: Follow the Water video is about Greenland's ice sheet, accompanied by computer models of the same, to show how the ice is melting, where the meltwater is going, and what it is doing both on the surface and beneath the ice.

This video describes how the normal thousands-of-years-long balance of new ice creation and melting due to ocean currents has been disrupted recently by warmer ocean currents. As a result, glacier tongues that overhang the interface between ice and ocean are breaking off and falling into the ocean.

This video focuses on the conifer forest in Alaska to explore the carbon cycle and how the forest responds to rising atmospheric carbon dioxide. Topics addressed in the video include wildfires, reflectivity, and the role of permafrost in the global carbon cycle.

In this activity students download satellite images displaying land surface temperature, snow cover, and reflected short wave radiation data from the NASA Earth Observation (NEO) Web site. They then explore and animate these images using the free tool ImageJ and utilize the Web-based analysis tools built into NEO to observe, graph, and analyze the relationships among these three variables.

This is a multi-faceted activity that offers students a variety of opportunities to learn about permafrost and the role of methane in thawing permafrost.

This video illustrates how atmospheric particles, or aerosols (such as black carbon, sulfates, dust, fog), can affect the energy balance of Earth regionally, and the implications for surface temperature warming and cooling.

Pages