In this activity for undergraduate students, learners build a highly simplified computer model of thermohaline circulation in the North Atlantic Ocean and conduct a set of simulation experiments to understand the complex dynamics inherent in this simple model.

This NBC Learn video features climate scientists doing their research on Mt. Kilimanjaro to study the climate of the past. The scientists put the recently observed changes on the glacier into perspective by comparing past climate fluctuations, stressing that the current observed rate of change is unprecedented.
Note: you will need to scroll down the Changing Planet video page to get to this video.

In this activity students download satellite images displaying land surface temperature, snow cover, and reflected short wave radiation data from the NASA Earth Observation (NEO) Web site. They then explore and animate these images using the free tool ImageJ and utilize the Web-based analysis tools built into NEO to observe, graph, and analyze the relationships among these three variables.

This video contains a visualization and explanation of the Arctic sea ice and how it has changed over the 25 years. In September 2012, the National Snow and Ice Data Center recorded the lowest extent of Arctic sea ice. The video discusses the climate importance of ice thickness, reflective properties, and self-reinforcing feedback mechanisms.

In this activity, learners use the STELLA box modeling software to determine Earth's temperature based on incoming solar radiation and outgoing terrestrial radiation. Starting with a simple black body model, the exercise gradually adds complexity by incorporating albedo, then a 1-layer atmosphere, then a 2-layer atmosphere, and finally a complex atmosphere with latent and sensible heat fluxes. With each step, students compare the modeled surface temperature to Earth's actual surface temperature, thereby providing a check on how well each increasingly complex model captures the physics of the actual system.

This is a series of 5 guided-inquiry activities that examine data and models that climate scientists use to attempt to answer the question of Earth's future climate.

C-Learn is a simplified version of a climate simulator. Its primary purpose is to help users understand the long-term climate effects (CO2 concentrations, global temperature, sea level rise) of various customized actions to reduce fossil fuel CO2 emissions, reduce deforestation, and grow more trees. Students can ask multiple, customized what-if questions and understand why the system reacts as it does.

In this activity, students consider Greenland reflectivity changes from 2000 to 2012 and what albedo anomalies may indicate about how the Greenland ice sheet is changing in a case study format.

In this video, students see how data from the ice core record is used to help scientists predict the future of our climate. Video features ice cores extracted from the WAIS Divide, a research station on the West Antarctic Ice Sheet.

This activity uses two interactive simulations to illustrate climate change, 1) at the micro/molecular level - modeling the impact of increasing concentrations of greenhouse gases in the atmosphere on surface temperature and 2) at the macro level - modeling changes in glacier thickness and flow as a result of rising surface temperature.