In this hands-on activity, students explore whether rooftop gardens are a viable option for combating the urban heat island effect. The guiding question is: Can rooftop gardens reduce the temperature inside and outside of houses?

This activity introduces students to plotting and analyzing phenology data. Students use 30 years of data that shows the date of the first lilac bloom and the number of days of ice cover of nearby Gull Lake.

In this activity, students are guided through the process of locating and graphing web-based environmental data that has been collected by GLOBE Program participants using actual data collected by students in Pennsylvania and comparing them to their local climatic boundary conditions. This activity highlights the opportunities for using GLOBE data to introduce basic concepts of Earth system science.

In this activity, students research changes to the environment in the Arctic/Bering Sea over time using oral and photographic histories. Developed for Alaska Native students, this activity can be customized for other regions.

This Earth Exploration Toolbook chapter is a detailed computer-based exploration in which students learn how various climatic conditions impact the formations of sediment layers on the ocean floor. They analyze sediment core data from the Ross Ice Shelf in Antarctica for evidence of climate changes over time. In addition, they interact with various tools and animations throughout the activity, in particular the Paleontological Stratigraphic Interval Construction and Analysis Tool (PSICAT) that is used to construct a climate change model of a sediment core from core images.

In this activity, students examine the effects of hurricanes on sea surface temperature using NASA data. They examine authentic sea surface temperature data to explore how hurricanes extract heat energy from the ocean surface.

This module contains five activities, in increasing complexity, that focus on understanding how to interpret and manipulate sea level data, using real data from NOAA.

Students first need to understand how to access and interpret sea surface height and tide data. To understand how to interpret these data, students will review and practice computing mean values. Along the way, they will learn how different factors, such as storms, affect tide levels and how to measure them. The goal is for students to become experienced with these kinds of data and the tools for accessing them so that, by the end of the module, they can continue to explore data sets driven by their own inquiry.

In this EarthLabs activity, learners explore the concepts of coral bleaching, bleaching hot spots and degree-heating weeks. Using data products from NOAA's Coral Reef Watch, students identify bleaching hot spots and degree-heating weeks around the globe as well as in the Florida Keys' Sombrero Reef to determine the impact higher-than-normal sea surface temperatures have on coral reefs.

This series of activities is designed to introduce students to the role of sediments and sedimentary rocks in the global carbon cycle. Students learn how stable carbon isotopes can be used to reconstruct ancient sedimentary environments. Students will make some simple calculations, formulate hypotheses, and think about the implications of their results. The activity includes an optional demonstration of the density separation of a sediment sample into a light, organic fraction and a heavier, mineral fraction.

This activity engages learners to make a model of sediment cores using different kinds of glass beads and sand. They learn how to examine the types, numbers, and conditions of diatom skeletons in the model sediment cores and tell something about the hypothetical paleoclimate that existed when they were deposited. The students get to be climate detectives.