This activity focuses on reconstructing the Paleocene-Eocene Thermal Maximum (PETM) as an example of a relatively abrupt global warming period. Students access Integrated Ocean Drilling Program (IODP) sediment core data with Virtual Ocean software in order to display relevant marine sediments and their biostratigraphy.

This video documents how scientists, using marine algae, can study climate change in the past to help understand potential effects of climate change in the future.

This static graph of changes in CO2 concentrations goes back 400,000 years, showing the dramatic spike in recent years.

This teaching activity is an introduction to how ice cores from the cryosphere are used as indicators and record-keepers of climate change as well as how climate change will affect the cryosphere.

This visualization graphically displays temperature and CO2 concentration in the atmosphere as derived from ice core data from 400,000 years ago to 1950. The data originates from UNEP GRID Arendal's graphic library of CO2 levels from Vostok ice core.

This video, from ClimateCentral, features a team of scientists from the Northern Greenland Eemian Ice Drilling Project (NEEM), who study atmospheric air bubbles trapped in an ice core from a period in Greenland's ice sheet which began about 130,000 years ago and lasted about 10,000 years; a period known as the Eemian. The air bubbles from the ancient atmosphere - all aligned on the same time scale - reveal what happened with climate change over that period of time.

In this hands-on activity, students will learn about dendrochronology (the study of tree rings to understand ecological conditions in the recent past) and come up with conclusions as to what possible climatic conditions might affect tree growth in their region. Students determine the average age of the trees in their schoolyard, investigate any years of poor growth, and draw conclusions about the reasons for those years.

This gallery of ten temperature graphs shows global temperatures on different timescales from decades (recently measured temperatures) to centuries (reconstructed) to millions of years (modeled from ice cores).

This video is the second of a three-video series in the Sea Change project, which follows the work of Dr. Maureen Raymo, paleogeologist at Columbia University's Lamont-Doherty Earth Observatory, who travels with fellow researchers to Australia in search of evidence of sea level that was once higher than it is today.

This video describes the role that dendrochronology plays in understanding climate change, especially changes to high elevation environments at an upper tree line. Dendrochronologists from the Big Sky Institute sample living and dead trees, describe how correlations between trees are made, and explain how tree cores record climate changes.

Pages