This video provides an overview of changes happening in the Arctic.

This is an interactive webtool that allows the user to choose a state or country and both assess how climate has changed over time and project what future changes are predicted to occur in a given area.

This video features research conducted at University of Colorado's Institute of Arctic and Alpine Research, which studies isotopes of hydrogen trapped in ice cores to understand climate changes in the past.

This animated visualization represents a time history of atmospheric carbon dioxide in parts per million (ppm) from 1979 to 2011, and then back in time to 800,000 years before the present.

This video, from Yale Climate Connections, explores the 2014 melting of the West Antarctic ice sheet that captured headlines. Interviews, animations, and news broadcasts explore what the melting meant for both the future of some of the Antarctic glaciers and sea level rise, and informs the viewer how seafloor terrain influences the speed of ice sheet melt.

This is a video overview of the history of climate science, with the goal of debunking the idea that in the 1970s, climate scientists were predicting global cooling.

This video is about Greenland's ice sheet, accompanied by computer models of the same, to show how the ice is melting, where the meltwater is going, and what it is doing both on the surface and beneath the ice.

This video provides an overview of how computer models work. It explains the process of data assimilation, which is necessary to ensure that models are tied to reality. The video includes a discussion of weather models using the Goddard Earth Observing System (GEOS-5) model and climate models using the MERRA (Modern Era Retrospective Analysis for Research and Applications) technique.

This monthly bulletin and animation provides regular and reliable visualizations of world weather and climate events of the previous month using NOAA data. Archives are available from October 2011 to present.

In this activity, students chart temperature changes over time in Antarctica's paleoclimate history by reading rock cores. Students use their data to create an interactive display illustrating how Antarctica's climate timeline can be interpreted from ANDRILL rock cores.

Pages