This visualization tool shows sea ice data from 1978 to the present. Selected data can be animated to show changes in sea ice extent over time. Data is added by the National Snow and Ice Data Center as it becomes available.

The video addresses impact of warming temperatures on major lakes of the world with specific focus on Lake Superior and Lake Tanganyika. It discusses the science of water stratification and its impact on lake ecosystems and on human populations whose livelihoods depend on the lakes.

This series of four animations shows how some of the key indicators of climate change (average global temperature, sea level, sea ice extent, carbon emissions) have changed in Earth's recent history.

This video features scientists in New Zealand's Southern Alps, examining samples from the rocky landscape once dominated by glaciers. Their research, combined with other climate records, has revealed a link between glacial retreat and rising levels of carbon dioxide in the air.

This NOAA visualization on YouTube shows the seasonal variations in sea surface temperatures and ice cover from 1985 to 2007. The visualization is based on data collected by NOAA polar-orbiting satellites. El NiÃo and La NiÃa are easily identified, as are the trends in decreasing polar sea ice.

This short video features the Alaska Lake Ice and Snow Observatory Network (ALISON project), a citizen science program in which 4th and 5th graders help scientists study the relationship between climate change and lake ice and snow conditions.

In this audio slideshow, an ecologist from the University of Florida describes the radiocarbon dating technique that scientists use to determine the amount of carbon within the permafrost of the Arctic tundra. Understanding the rate of carbon released as permafrost thaws is necessary to understand how this positive feedback mechanism is contributing to climate change that may further increase global surface temperatures.

This video follows biologist Gretchen Hofmann as she studies the effects of ocean acidification on sea urchin larvae.

This teaching activity is an introduction to how ice cores from the cryosphere are used as indicators and record-keepers of climate change as well as how climate change will affect the cryosphere.

In this hands-on activity, students will learn about dendrochronology (the study of tree rings to understand ecological conditions in the recent past) and come up with conclusions as to what possible climatic conditions might affect tree growth in their region. Students determine the average age of the trees in their schoolyard, investigate any years of poor growth, and draw conclusions about the reasons for those years.

Pages