This interactive exposes students to Earth's atmospheric gases of oxygen, carbon dioxide, and ozone. As the user manipulates the interactive to increase or decrease the concentration of each gas, explanations and images are provided that explain and visualize what the Earth would be like in each scenario.

This simulation allows the user to project CO2 sources and sinks by adjusting the points on a graph and then running the simulation to see projections for the impact on atmospheric CO2 and global temperatures.

This straightforward calculator provides conversions from one unit of energy to the equivalent amount of CO2 emission expected from using that amount.

In this activity, students conduct a life cycle assessment of energy used and produced in ethanol production, and a life cycle assessment of carbon dioxide used and produced in ethanol production.

In this interactive simulation, students can explore global CO2 emissions displayed by different continents/countries and plotted based on the GDP. A map view is also accessible.

This animated visualization represents a time history of atmospheric carbon dioxide in parts per million (ppm) from 1979 to 2011, and then back in time to 800,000 years before the present.

This is a simulation that illustrates how temperature will be affected by global CO2 emission trajectories. It addresses the issue that even if global emissions begin to decrease, the atmospheric concentration of CO2 will continue to increase, resulting in increased global temperatures.

This carbon calculator, developed by the EPA, guides students in calculating their carbon footprint and then using that information to make decisions about how to reduce their carbon emissions.

This visualization is a website with an interactive calculator that allows for estimation of greenhouse gas production from croplands in the United States.

One of a suite of online climate interactive simulations, this Greenhouse Gas Simulator uses the bathtub model to demonstrate how atmospheric concentrations of CO2 will continue to rise unless they are lowered to match the amount of CO2 that can be removed through natural processes.