This video shows 15 years of data obtained via Polar-orbiting satellites that are able to detect subtle differences in ocean color, allowing scientists to see where there are higher concentrations of phytoplankton - a proxy for the concentration of chlorophyll in the ocean.

This set of activities is about carbon sources, sinks, and fluxes among them - both with and without anthropogenic components.

Students explore the increase in atmospheric carbon dioxide over the past 40 years with an interactive online model. They use the model and observations to estimate present emission rates and emission growth rates. The model is then used to estimate future levels of carbon dioxide using different future emission scenarios. These different scenarios are then linked by students to climate model predictions also used by the Intergovernmental Panel on Climate Change.

This interactive shows the extent of the killing of lodgepole pine trees in western Canada. The spread of pine beetle throughout British Columbia has devastated the lodgepole pine forests there. This animation shows the spread of the beetle and the increasing numbers of trees affected from 1999-2008 and predicts the spread up until 2015.

This video highlights research conducted at Woods Hole on how heat absorbed by the ocean and changes of ocean chemistry from human activities could lead to a tipping point for marine life and ecosystems. Includes ice bath experiment that models the tipping point of Arctic sea ice.

In this activity students learn how Earth's energy balance is regulating climate. This activity is lesson 4 in the nine-lesson module Visualizing and Understanding the Science of Climate Change.

In this video, Michael Mann and Peter Ramsdorf explore some of the information from the 2013 IPCC 5th report in light of public perceptions of climate science.

Students use the GLOBE Student Data Archive and visualizations to display current temperatures on a map of the world. They explore the patterns in the temperature map, looking especially for differences between different regions and hemispheres and zoom in for a closer look at a region that has a high density of student reporting stations (such as the US and Europe). Students compare and contrast the patterns in these maps looking for seasonal patterns.

This short video, adapted from NOVA, explains how Earth's position relative to the Sun might be responsible for the dramatic shift in the climate of what is now the Saharan nation of Djibouti.

An interactive simulation of Earth's seasonal dynamics that includes the axial tilt and other aspects of Earth's annual cycle.

This is part of a larger lab from the University of Nebraska at Lincoln: