In this activity, students explore the way that human activities have changed the way that carbon is distributed in Earth's atmosphere, lithosphere, biosphere and hydrosphere.

Developed for Alaska Native students, this activity can be customized for other regions. Students interview elders or other long-term residents of the community to document their knowledge of local changes to the landscape and climate. Based on the information and photos they acquired from the interview, students return to photo locations to observe and record changes. Finally, they develop ideas about potential impacts of a warming climate to the ecosystem that surrounds them.

This short video, adapted from NOVA, explains how Earth's position relative to the Sun might be responsible for the dramatic shift in the climate of what is now the Saharan nation of Djibouti.

This video describes why tropical ice cores are important and provide different information than polar ice cores, why getting them now is important (they are disappearing), and how scientists get them. The work of glaciologist Lonnie Thompson is featured, with a focus on his work collecting cores of ice from high mountain glaciers that contain significant data about past climate change.

This graph, based on key ice core data sets and recent monitoring programs, shows the variations in concentration of carbon dioxide (CO2) in the atmosphere during the last 400,000 years.

This video is the first of a three-video series from the Sea Change project. It features the field work of scientists from the US and Australia looking for evidence of sea level rise during the Pliocene era when Earth was (on average) about 2 to 3 degrees Celsius hotter than it is today.

In this learning activity, students use a web-based carbon calculator to determine their carbon footprint on the basis of their personal and household habits and choices. Students identify which personal activities and household choices produce the most CO2 emissions, compare their carbon footprint to the U.S. and global averages, and identify lifestyle changes they can make to reduce their footprint.

Two short, narrated animations about carbon dioxide and Earth's temperature are presented on this webpage. The first animation shows the rise in atmospheric CO2 levels, human carbon emissions, and global temperature rise of the past 1,000 years; the second shows changes in the level of CO2 from 800,000 years ago to the present.

This lesson plan engages students in a real-life exploration of climate change as it is affected by greenhouse emissions from vehicles. The aim of this activity is for students to realize the impact of vehicle use in their family and to give students the opportunity to brainstorm viable alternatives to this use.

This is a classroom activity about the forcing mechanisms for the most recent cold period: the Little Ice Age (1350-1850). Students receive data about tree ring records, solar activity, and volcanic eruptions during this time period. By comparing and contrasting time intervals when tree growth was at a minimum, solar activity was low, and major volcanic eruptions occurred, they draw conclusions about possible natural causes of climate change and identify factors that may indicate climate change.

Pages