This flow chart shows the sources and activities across the U.S. economy that produce greenhouse gas emissions.

This animated visualization represents a time history of atmospheric carbon dioxide in parts per million (ppm) from 1979 to 2016, and then back in time to 800,000 years before the present.

This short video, adapted from NOVA, explains how Earth's position relative to the Sun might be responsible for the dramatic shift in the climate of what is now the Saharan nation of Djibouti.

This video production is a part of a four-panel report from the National Academies' America's Climate Choices project. The video maps out the realm of our accumulated knowledge regarding climate change and charts a path forward, urging that research on climate change enter a new era focused on the needs of decision makers.

This lesson explores El NiÃo by looking at sea surface temperature, sea surface height, and wind vectors in order to seek out any correlations there may be among these three variables using the My NASA Data Live Access Server. The lesson guides the students through data representing the strong El NiÃo from 1997 to 1998. In this way, students will model the methods of researchers who bring their expertise to study integrated science questions.

This is a video overview of the history of climate science, with the goal of debunking the idea that in the 1970s, climate scientists were predicting global cooling.

In this activity, students use datasets from both the Northern and Southern hemispheres to observe seasonal and hemispheric differences in changes to atmospheric C02 release and uptake over time.

This lab exercise is designed to provide a basic understanding of a real-world scientific investigation. Learners are introduced to the concept of tropospheric ozone as an air pollutant due to human activities and burning of fossil fuels. Students analyze and visualize data to investigate this air pollution and climate change problem, determine the season in which it commonly occurs, and communicate the results.

In this activity, students analyze data maps of sea surface temperature anomalies for a 14-year interval and create an ENSO time line in a case study format. Based on their findings, students determine the recurrence interval of the ENSO system.

This activity explores the urban heat island effect. Students access student-collected surface temperature data provided through the GLOBE program and analyze the data with My World GIS.

Pages