This graph, based on key ice core data sets and recent monitoring programs, shows the variations in concentration of carbon dioxide (CO2) in the atmosphere during the last 400,000 years.

In this activity, students explore the increase in atmospheric carbon dioxide over the past 40 years with an interactive online model. They use the model and observations to estimate present emission rates and emission growth rates. The model is then used to estimate future levels of carbon dioxide using different future emission scenarios. These different scenarios are then linked by students to climate model predictions also used by the Intergovernmental Panel on Climate Change.

This multi-part activity introduces users to normal seasonal sea surface temperature (SST) variation as well as extreme variation, as in the case of El NiÃo and La NiÃa events, in the equatorial Pacific Ocean. Via a THREDDS server, users learn how to download seasonal SST data for the years 1982 to 1998. Using a geographic information system (GIS), they visualize and analyze that data, looking for the tell-tale SST signature of El Nino and La Nina events that occurred during that time period. At the end, students analyze a season of their own choosing to determine if an El NiÃo or La NiÃa SST pattern emerged in that year's data.

In this activity, students work in groups, plotting carbon dioxide concentrations over time on overheads and estimating the rate of change over five years. Stacked together, the overheads for the whole class show an increase on carbon dioxide over five years and annual variation driven by photosynthesis. This exercise enables students to practice basic quantitative skills and understand how important sampling intervals can be when studying changes over time. A goal is to see how small sample size may give incomplete picture of data.

This activity develops students' understanding of climate by having them make in-depth examinations of historical climate patterns using both graphical and map image formats rather than presenting a general definition of climate. Students explore local climate in order to inform a pen pal what type of weather to expect during an upcoming visit. Students generate and explore a variety of graphs, charts, and map images and interpret them to develop an understanding of climate.

In this 3-part lesson, students explore California climate and factors that are leading to changes within this climate system. Students begin by exploring California's climate and the state's topography. Next, they investigate coastal versus inland climate. Finally, they use My NASA Data to explore the effects of El NiÃo/La NiÃa on two locations found at the same latitude.

This lesson explores El Nino by looking at sea surface temperature, sea surface height, and wind vectors in order to seek out any correlations there may be among these three variables, using the My NASA Data Live Access Server. The lesson guides the students through data representing the strong El Nino from 1997 to 1998. In this way, students will model the methods of researchers who bring their expertise to study integrated science questions.

These graphs show carbon dioxide measurements at the Mauna Loa Observatory, Hawaii. The graphs display recent measurements as well as historical long term measurements. The related website summarizes in graphs the recent monthly CO2, the full CO2 Record, the annual Mean CO2 Growth Rate, and gives links to detailed CO2 data for this location, which is one of the most important CO2 tracking sites in the world.

This animation depicts the carbon cycle in a fashion that is suited for younger audiences. The video discusses how carbon enters and exits the environment through both natural and human-driven ways.