For this lesson, the guiding Concept Question is: What is climate change and how does climate relate to greenhouse gas concentrations over time? This activity is the second lesson in a nine-lesson module 'Visualizing and Understanding the Science of Climate Change' produced by the International Year of Chemistry project (2011).

In this activity, students compare carbon dioxide data from Mauna Loa Observatory, Barrow, Alaska, and the South Pole over the past 40 years. Students use the data to learn about what causes short-term and long-term changes in atmospheric carbon dioxide. This activity makes extensive use of Excel.

This is a teaching activity in which students learn about the connection between CO2 emissions, CO2 concentration, and average global temperatures. Through a simple online model, students learn about the relationship between these and learn about climate modeling while predicting temperature change over the 21st century.

In this hands-on activity, participants learn the characteristics of the five layers of the atmosphere and make illustrations to represent them. They roll the drawings and place them in clear plastic cylinders, and then stack the cylinders to make a model column of the atmosphere.

This lesson explores the chemistry of some of the greenhouse gases that affect Earth's climate. Third in a series of 9 lessons from an online module entitled 'Visualizing and Understanding the Science of Climate Change'.

In this experiment, students observe a natural process that removes carbon dioxide (CO2) from Earth's atmosphere. This process is a part of the carbon cycle and results in temperature suitable for life. Students learn that the carbon cycle is a fundamental Earth process. Throughout Earth's history, the balance of carbon has kept the atmosphere's carbon dioxide (CO2) and Earth's temperature within relatively narrow ranges.

This is a series of 5 guided-inquiry activities that examine data and models that climate scientists use to attempt to answer the question of Earth's future climate.

An activity focusing on black carbon. This activity explores the impacts of the use of black carbon generating wood, dung, and charcoal for fuel in developing countries.

In this activity, students graph and analyze methane data, extracted from an ice core, to examine how atmospheric methane has changed over the past 109,000 years in a case study format. Calculating the rate of change of modern methane concentrations, they compare the radiative forcing of methane and carbon dioxide and make predictions about the future, based on what they have learned from the data and man's role in that future.

In this Earth Exploration Toolbook chapter, students select, explore, and analyze satellite imagery. They do so in the context of a case study of the origins of atmospheric carbon monoxide and aerosols, tiny solid airborne particles such as smoke from forest fires and dust from desert wind storms. They use the software tool ImageJ to animate a year of monthly images of aerosol data and then compare the animation to one created for monthly images of carbon monoxide data. Students select, explore, and analyze satellite imagery using NASA Earth Observatory (NEO) satellite data and NEO Image Composite Explorer (ICE) tool to investigate seasonal and geographic patterns and variations in concentration of CO and aerosols in the atmosphere.