This animation demonstrates the changing declination of the sun with a time-lapse animation. It shows how the shadow of a building changes over the course of a year as the declination of the sun changes.

In this activity, students develop an understanding of the relationship between natural phenomena, weather, and climate change: the study known as phenology. In addition, they learn how cultural events are tied to the timing of seasonal events. Students brainstorm annual natural phenomena that are tied to seasonal weather changes. Next, they receive information regarding the Japanese springtime festival of Hanami, celebrating the appearance of cherry blossoms. Students plot and interpret average bloom date data from over the past 1100 years.

In this worksheet-based activity, students review global visualizations of incoming sunlight and surface temperature and discuss seasonal change. Students use the visualizations to support inquiry on the differences in seasonal change in the Northern and Southern Hemispheres and how land and water absorb and release heat differently. The activity culminates in an argument about why one hemisphere experiences warmer summers although it receives less total solar energy.

This short video, adapted from NOVA, explains how Earth's position relative to the Sun might be responsible for the dramatic shift in the climate of what is now the Saharan nation of Djibouti.

This activity teaches students about the albedo of surfaces and how it relates to the ice-albedo feedback effect. During an experiment, students observe the albedo of two different colored surfaces by measuring the temperature change of a white and black surface under a lamp.

This image depicts a representative subset of the atmospheric processes related to aerosol lifecycles, cloud lifecycles, and aerosol-cloud-precipitation interactions that must be understood to improve future climate predictions.

This activity introduces students to different forms of energy, energy transformations, energy storage, and the flow of energy through systems. Students learn that most energy can be traced back to nuclear fusion on the sun.

This short video, the sixth in the National Academies Climate Change, Lines of Evidence series, explores the hypothesis that changes in solar energy output may be responsible for observed global surface temperature rise. Several lines of evidence, such as direct satellite observations, are reviewed.

In this activity, students use a physical model to learn the basics of photosynthesis and respiration within the carbon cycle.

Students perform a lab to explore how the color of materials at Earth's surface affect the amount of warming. Topics covered include developing a hypothesis, collecting data, and making interpretations to explain why dark-colored materials become hotter.

Pages