This image depicts a representative subset of the atmospheric processes related to aerosol lifecycles, cloud lifecycles, and aerosol-cloud-precipitation interactions that must be understood to improve future climate predictions.

This animated visualization of precession, eccentricity, and obliquity is simple and straightforward and provides text explanations. It is a good starting place to show Milankovitch cycles.

A computer animation on the reason for the seasons. Voice-over describes the motion of Earth around the sun to show how the sun's light impacts the tilted Earth at different times of the year, causing seasonal changes.

This brief, hands-on activity illustrates the different heating capacities of soil and water in order to understand why places near the sea have a more moderate climate than those inland.

In this activity, students use a physical model to learn the basics of photosynthesis and respiration within the carbon cycle.

This NASA video reviews the role of the sun in driving the climate system. It uses colorful animations to illustrate Earth's energy balance and how increased greenhouse gases are creating an imbalance in the energy budget, leading to warming. The video also reviews how the NASA satellite program collects data on the sun.

This NOAA visualization video on YouTube shows the seasonal variations in sea surface temperatures and ice cover for the 22 years prior to 2007 based on data collected by NOAA polar-orbiting satellites (POES). El NiÃo and La NiÃa are easily identified, as are the trends in decreasing polar sea ice.

In this hands-on lesson, students measure the effect of distance and inclination on the amount of heat felt by an object and apply this experiment to building an understanding of seasonality. In Part 1, the students set up two thermometers at different distances from a light bulb and record their temperatures to determine how distance from a heat source affects temperature. In Part 2, students construct a device designed to measure the temperature as a function of viewing angle toward the Sun by placing a thermometer inside a black construction paper sleeve, and placing the device at different angles toward the Sun. They then explain how distance and inclination affect heat and identify situations where these concepts apply, such as the seasons on Earth and the NASA Mercury MESSENGER mission.

This NASA video discusses the impacts of the sun's energy, Earth's reflectance and greenhouse gases on the Earth System.

Students use the GLOBE Student Data Archive and visualizations to display current temperatures on a map of the world. They explore the patterns in the temperature map, looking especially for differences between different regions and hemispheres and zoom in for a closer look at a region that has a high density of student reporting stations (such as the US and Europe). Students compare and contrast the patterns in these maps looking for seasonal patterns.