This activity from the Department of Energy provides background information about solar ovens and instructions on building a simple model solar cooker.

This activity allows students to explore sea level rise. The experiment allows them to test whether land ice and/or sea ice contribute to sea level rise as they melt.

This well-designed experiment compares CO2 impacts on salt water and fresh water. In a short demonstration, students examine how distilled water (i.e., pure water without any dissolved ions or compounds) and seawater are affected differently by increasing carbon dioxide in the air.

This demonstration shows how water absorbs more heat than air. The corollary that is made is that the oceans are absorbing a lot of the heat related to climate change. The video tutorial shows an engaging demonstration that teachers can do live in their classrooms as part of a larger lesson/discussion about global warming. The video itself also includes an animation of how greenhouse gases contribute to global warming and concludes by mentioning simple solutions for students.

Two simple experiments/demonstrations show the role of plants in mitigating the acidification caused when CO2 is dissolved in water.

This activity allows students to demonstrate the thermal expansion of water for themselves using water bottles and straws. The discussion allows them to explore the connection between this concept and sea level rise due to climate change.

This short investigation from Carbo Europe explores how temperature affects the solubility of carbon dioxide in water.

This model of ocean-atmosphere interaction shows how carbon dioxide gas diffuses into water, causing the water to become more acidic. The video demonstration and instruction provide an explanation of the chemistry behind this change and the consequences of ocean acidification. The video also addresses a misconception about how ocean acidification affects shelled organisms.

This is a hands-on inquiry activity using zip-lock plastic bags that allows students to observe the process of fermentation and the challenge of producing ethanol from cellulosic sources. Students are asked to predict outcomes and check their observations with their predictions. Teachers can easily adapt to materials and specific classroom issues.

Here students use data from the NOAA carbon dioxide monitoring sites, such as Mauna Loa, to graph the Keeling Curve for themselves on large sheets of paper. Each group graphs one year, and the graphs are joined at the end to reveal the overall upward trend. The explanation describes the carbon cycle and how human activities are leading to the overall trend of rising carbon dioxide.

Pages