This video from a 2005 NOVA program features scientists who study the Jakobshavn Isbrae glacier in western Greenland. The glacier is shrinking and moving faster due to increased melting in recent years. The video includes footage of scientists in the field explaining methods and animation of ice sheet dynamics leading to faster glacier movement.

This visualization, from the US Geological Survey, provides a simple schematic of the various pathways that water can take as it cycles through ocean, lakes, atmosphere, surface and ground.

An interactive simulation that allows the user to adjust mountain snowfall and temperature to see the glacier grow and shrink in response.

In this video, students learn how scientific surveys of wildlife are performed at a site in Yosemite, California. These surveys, in conjunction with studies from the early 1900s, provide evidence that animal populations in Yosemite have shifted over time in response to rising temperatures.

In this activity students use NASA satellite data to study changes in temperature and snow-ice coverage in the South Beaufort Sea, Alaska. They will then correlate the data with USGS ground tracking of polar bears and relate their findings to global change, sea ice changes, and polar bear migration and survival.

This teaching activity addresses environmental stresses on corals. Students assess coral bleaching using water temperature data from the NOAA National Data Buoy Center. Students learn about the habitat of corals, the stresses on coral populations, and the impact of increased sea surface temperatures on coral reefs. In a discussion section, the connection between coral bleaching and global warming is drawn.

One of a suite of online climate interactive simulations, this Greenhouse Gas Simulator uses the bathtub model to demonstrate how atmospheric concentrations of CO2 will continue to rise unless they are lowered to match the amount of CO2 that can be removed through natural processes.

In this activity, students research various topics about ocean health, e.g. overfishing, habitat destruction, invasive species, climate change, pollution, and ocean acidification. An optional extension activity has them creating an aquatic biosphere in a bottle experiment in which they can manipulate variables.

This video illustrates how atmospheric particles, or aerosols (such as black carbon, sulfates, dust, fog), can affect the energy balance of Earth regionally, and the implications for surface temperature warming and cooling.

This simulation allows students to explore the change in sea surface pH levels with increasing CO2 levels.