In this video scientists discuss possible rates of sea level rise, storms and resulting damage, rising temperatures and melting ice, and their collective effects on ecosystems.

In this video, Michael Mann and Stefan Rahmstorf explore some of the information from the 2013 IPCC 5th report in light of public perceptions of climate science.

In this video, a team of paleontologists, paleobotanists, soil scientists, and other researchers take to the field in Wyoming's Bighorn Basin to document how the climate, plants, and animals there changed during the Paleocene- Eocene Thermal Maximum (PETM). During this time a sudden, enormous influx of carbon flooded the ocean and atmosphere for reasons that are still unclear to scientists. The PETM is used as an analog to the current warming. The scientists' research may help inform our understanding of current increases in carbon in the atmosphere and ocean and the resulting impact on ecosystems.

This visualization provides an informative summary of the quarterly seasonal global weather and climate using the 3-D Science on a Sphere format. These video summaries use animations of recent NOAA data and an engaging commentary to review the climate highlights of the past 4 seasons. Topics include, El Nino/La Nina, temperature trends, extreme weather, and emerging climate research.

This short video, adapted from NOVA, explains how Earth's position relative to the Sun might be responsible for the dramatic shift in the climate of what is now the Saharan nation of Djibouti.

This video provides a good introduction to the field of attribution science. Beginning with an introduction to weather and climate, it describes how severe weather might be linked to climate change and the science behind attribution studies. It gives a good explanation behind how scientists use climate models to study whether severe weather events were influenced by climate change. It also discusses the question, "does climate change cause extreme weather?" and provides an introduction to the concepts of probability, causation, and correlation in regards to attribution science (how much climate change influenced an event verses normal variations in weather).

This video describes why tropical ice cores are important and provide different information than polar ice cores, why getting them now is important (they are disappearing), and how scientists get them. The work of glaciologist Lonnie Thompson is featured, with a focus on his work collecting cores of ice from high mountain glaciers that contain significant data about past climate change.

Comprehensive curriculum/unit to teach how food systems affect climate change. Strong use of real data is embedded throughout. Full lessons, mini-lessons, and short videos are presented.

This visualization graphically displays temperature and CO2 concentration in the atmosphere as derived from ice core data from 400,000 years ago to 1950. The data originates from UNEP GRID Arendal's graphic library of CO2 levels from Vostok ice core.

C-ROADS is a simplified version of a climate simulator. Its primary purpose is to help users understand the long-term climate effects (CO2 concentrations, global temperature, sea level rise) of various customized actions to reduce fossil fuel CO2 emissions, reduce deforestation, and grow more trees. Students can ask multiple, customized what-if questions and understand why the system reacts as it does.

Pages