This activity engages students in learning about ways to become energy efficient consumers. Students examine how different countries and regions around the world use energy over time, as reflected in night light levels. They then track their own energy use, identify ways to reduce their individual energy consumption, and explore how community choices impact the carbon footprint.

This introductory video summarizes the process of generating solar electricity from photovoltaic and concentrating (thermal) solar power technologies.

This short video makes the case that rapid climate change affects the whole planet, but individuals can make a difference and make their carbon footprint smaller. Common suggestions are identified for young children to consciously consider what they can do.

In this activity, student teams research and develop a proposal to decrease the carbon footprint of their city's/town's public transportation system and then prepare a report that explains why their transportation plan is the best for their community.

This video, along with a background essay, focuses on impacts of climate change on the lives of Native Alaskans around Barrow, Alaska. Specific changes include the timing of the changes in the formation and breakout of sea ice and the impacts on subsistence living.

This video describes how geothermal heat resources in California have been tapped to supply 850 MW of electricity. Images and animations show how the area known as The Geysers has been developed to capture steam, produced from trapped rainwater and heated by the earth. Major challenges include finding suitable geothermal resources to develop, and ensuring that underground water is replenished.

This interactive map allows the user to explore projected alterations of land surfaces in coastal communities, based on different scenarios of sea level changes over time.

This video is one of a series of videos from the Switch Energy project. It describes three types of geothermal sources -- rare ones in which high temperatures are naturally concentrated near the surface, deep wells that require fracturing the rock and then circulating water to bring heat to the surface, and low temperature sources that use constant temperatures just below the surface to heat or cool a building. The latter two are more widely available but cost-prohibitive today.

In this hands-on activity, students explore whether rooftop gardens are a viable option for combating the urban heat island effect. The guiding question is: Can rooftop gardens reduce the temperature inside and outside of houses?

This interactive provides a scenario for students to look at issues related to energy and climate change from the perspective of a monarch.

Pages