This simulation allows the user to project CO2 sources and sinks by adjusting the points on a graph and then running the simulation to see projections for the impact on atmospheric CO2 and global temperatures.

In this video, Michael Mann and Peter Ramsdorf explore some of the information from the 2013 IPCC 5th report in light of public perceptions of climate science.

In this activity, students download historic temperature datasets and then graph and compare with different locations. As an extension, students can download and examine data sets for other sites to compare the variability of changes at different distinct locations, and it is at this stage where learning can be individualized and very meaningful.

This Earth Exploration Toolbook chapter is a detailed computer-based exploration in which students learn how various climatic conditions impact the formations of sediment layers on the ocean floor. They analyze sediment core data from the Ross Ice Shelf in Antarctica for evidence of climate changes over time. In addition, they interact with various tools and animations throughout the activity, in particular the Paleontological Stratigraphic Interval Construction and Analysis Tool (PSICAT) that is used to construct a climate change model of a sediment core from core images.

This animation shows the Arctic sea ice September (minimum) extents from 1979-2014.

In this activity, students work in groups, plotting carbon dioxide concentrations over time on overheads and estimating the rate of change over five years. Stacked together, the overheads for the whole class show an increase on carbon dioxide over five years and annual variation driven by photosynthesis. This exercise enables students to practice basic quantitative skills and understand how important sampling intervals can be when studying changes over time. A goal is to see how small sample size may give incomplete picture of data.

This animation depicts global surface warming as simulated by NCAR's Community Climate System Model (CCSM) Version 3. It shows the temperature anomalies relative to the end of the 19th century, both over the entire globe and as a global average. The model shows the temporary cooling effects during 5 major volcanic eruptions and estimates future temperature trends based on different amounts of greenhouse gas emissions.

In this activity, students are guided through graphs of surface air temperature anomaly data and Vostok ice core data to illustrate how scientists use these data to develop the basis for modeling how climate is likely to change in the future.

This video, from ClimateCentral, features a team of scientists from the Northern Greenland Eemian Ice Drilling Project who study atmospheric air bubbles trapped in an ice core. This work highlights a period in Greenland's ice sheet which began about 130,000 years ago and lasted about 10,000 years; a period known as the Eemian. The air bubbles from the ancient atmosphere reveal what happened with climate change over that period of time.

This video shows where and how ice cores are extracted from the West Antarctic Ice Sheet. The cores are cut, packaged, flown to the ice core storage facility in Denver, further sliced into samples, and shipped to labs all over the world where scientists use them to study indicators of climate change from the past.

Pages