This short activity provides a way to improve understanding of a frequently-published diagram of global carbon pools and fluxes. Students create a scaled 3-D visual of carbon reservoirs and the movement of carbon between reservoirs.

This lesson explores the chemistry of some of the greenhouse gases that affect Earth's climate. Third in a series of 9 lessons from an online module entitled 'Visualizing and Understanding the Science of Climate Change'.

This hands-on activity explores the driving forces behind global thermohaline circulation.

This is a series of 5 guided-inquiry activities that examine data and models that climate scientists use to attempt to answer the question of Earth's future climate.

This engaging activity introduces students to the concept of albedo and how albedo relates to Earth's energy balance.

This multi-part activity introduces users to normal seasonal sea surface temperature (SST) variation as well as extreme variation, as in the case of El NiÃo and La NiÃa events, in the equatorial Pacific Ocean. Via a THREDDS server, users learn how to download seasonal SST data for the years 1982 to 1998. Using a geographic information system (GIS), they visualize and analyze that data, looking for the tell-tale SST signature of El NiÃo and La NiÃa events that occurred during that time period. At the end, students analyze a season of their own choosing to determine if an El NiÃo or La NiÃa SST pattern emerged in that year's data.

This hands-on activity is a kinesthetic game illustrating the dynamics of the carbon cycle. Acting as carbon atoms, students travel from one carbon reservoir to another. At each reservoir they determine, by rolling dice, how long they stay in the reservoir or how likely it is that they will move to another carbon reservoir.

This activity uses two interactive simulations to illustrate climate change, 1) at the micro/molecular level - modeling the impact of increasing concentrations of greenhouse gases in the atmosphere on surface temperature and 2) at the macro level - modeling changes in glacier thickness and flow as a result of rising surface temperature.

In this activity students learn how Earth's energy balance is regulating climate. This activity is lesson 4 in the nine-lesson module Visualizing and Understanding the Science of Climate Change.

In this short, hands-on activity, students build simple molecular models of 4 atmospheric gases (O2, N2, C02, and methane), compare their resonant frequencies, and make the connection between resonant frequency and the gas's ability to absorb infrared radiation.

Pages