In this hands-on activity, participants learn the characteristics of the five layers of the atmosphere and make illustrations to represent them. They roll the drawings and place them in clear plastic cylinders, and then stack the cylinders to make a model column of the atmosphere.

This hands-on activity explores the driving forces behind global thermohaline circulation.

In this short, hands-on activity, students build simple molecular models of 4 atmospheric gases (O2, N2, C02, and methane), compare their resonant frequencies, and make the connection between resonant frequency and the gas's ability to absorb infrared radiation.

In this experiment, students observe a natural process that removes carbon dioxide (CO2) from Earth's atmosphere. This process is a part of the carbon cycle and results in temperature suitable for life. Students learn that the carbon cycle is a fundamental Earth process. Throughout Earth's history, the balance of carbon has kept the atmosphere's carbon dioxide (CO2) and Earth's temperature within relatively narrow ranges.

This engaging activity introduces students to the concept of albedo and how albedo relates to Earth's energy balance.

This activity involves plotting and comparing monthly data on atmospheric C02 concentrations over two years, as recorded in Mauna Loa and the South Pole, and postulating reasons for differences in their seasonal patterns. Longer-term data is then examined for both sites to see if seasonal variations from one site to the other carry over into longer term trends.

This activity introduces students to visualization capabilities available through NASA's Earth Observatory, global map collection, NASA NEO and ImageJ. Using these tools, students build several animations of satellite data that illustrate carbon pathways through the Earth system.

This hands-on activity is a kinesthetic game illustrating the dynamics of the carbon cycle. Acting as carbon atoms, students travel from one carbon reservoir to another. At each reservoir they determine, by rolling dice, how long they stay in the reservoir or how likely it is that they will move to another carbon reservoir.

In this lab activity, students use a chemical indicator (bromothymol blue) to detect the presence of carbon dioxide in animal and plant respiration and in the burning of fossil fuels and its absence in the products of plant photosynthesis. After completing the five parts of this activity, students compare the colors of the chemical indicator in each part and interpret the results in terms of the qualitative importance of carbon sinks and sources.

In this activity students learn how Earth's energy balance is regulating climate. This activity is lesson 4 in the nine-lesson module Visualizing and Understanding the Science of Climate Change.