This is a classroom activity about the forcing mechanisms for the most recent cold period: the Little Ice Age (1350-1850). Students receive data about tree ring records, solar activity, and volcanic eruptions during this time period. By comparing and contrasting time intervals when tree growth was at a minimum, solar activity was low, and major volcanic eruptions occurred, they draw conclusions about possible natural causes of climate change and identify factors that may indicate climate change.

This video considers the current estimates of sea level rise as possibly too conservative and discusses more recent data on ice melt rates coming from Antarctica and Greenland, showing rates of melt at up to 5 times as rapid. Scientists discuss what levels and rates of sea level rise have occurred in the past, including the Pliocene, which demonstrated 1m rise every 20 years.

This article and slide show from the New York Times, features several scientists from the University of Alaska, Fairbanks, who study the effects of thawing permafrost in Alaska.

In this jigsaw activity, students explore meteorological data collected from Eureka, Canada to try to decide when would be the best time for an Arctic visit.

This video segment, from the 'Earth: The Operators' Manual' featuring climate expert Richard Alley, shows how ice cores stored at the National Ice Core Lab provide evidence that ancient ice contains records of Earth's past climate - specifically carbon dioxide and temperature.

This lesson sequence guides students to learn about the geography and the unique characteristics of the Arctic, including vegetation, and people who live there. Students use Google Earth to explore the Arctic and learn about meteorological observations in the Arctic, including collecting their own data in hands-on experiments. This is the first part of a three-part curriculum about Arctic climate.

This NASA animation of the Five-Year Average Global Temperature Anomalies from 1881 to 2009 shows how temperature anomalies have varied in the last 130 years. The color-coded map displays a long-term progression of changing global surface temperatures from 1881 to 2009. Dark red indicates the greatest warming and dark blue indicates the greatest cooling.

In this activity students work with data to analyze local and global temperature anomaly data to look for warming trends. The activity focuses on the Great Lakes area.

This video segment describes climate data collection from Greenland ice cores that indicate Earth's climate can change abruptly over a single decade rather than over thousands of years. The narrator describes how Earth has undergone dramatic climate shifts in relatively short spans of time prior to 8000 years ago. The video and accompanying essay provide explanations of the differences between weather and climate and how the climate itself had been unstable in the past, with wide variations in temperature occurring over decadal timescales.

In this activity, students learn about the urban heat island effect by investigating which areas of their schoolyard have higher temperatures - trees, grass, asphalt, and other materials. Based on their results, they hypothesize how concentrations of surfaces that absorb heat might affect the temperature in cities - the urban heat island effect. Then they analyze data about the history of Los Angeles heat waves and look for patterns in the Los Angeles climate data and explore patterns.

Pages