This animation depicts the carbon cycle in a fashion that is suited for younger audiences. The video discusses how carbon enters and exits the environment through both natural and human-driven ways.

This short, engaging video created by NASA presents a complex topic via a simple analogy. The idea of positive and negative feedback is demonstrated by Daisyworld - a world with black and white flowers growing on it.

This video provides an overview of changes happening in the Arctic.

This video, from Yale Climate Connections, explores the 2014 melting of the West Antarctic ice sheet that captured headlines. Interviews, animations, and news broadcasts explore what the melting meant for both the future of some of the Antarctic glaciers and sea level rise, and informs the viewer how seafloor terrain influences the speed of ice sheet melt.

This video focuses on the conifer forest in Alaska to explore the carbon cycle and how the forest responds to rising atmospheric carbon dioxide. Topics addressed in the video include wildfires, reflectivity, and the role of permafrost in the global carbon cycle.

This is a collection of five short videos that show how climate change is affecting fishing, native populations and access for the oil and gas industry in the Arctic. The videos include personal reflections by writers Andrew C. Revkin and Simon Romero, scientists, and residents about their experience of the impacts of the climate change in the Arctic.

This video uses film of the Arctic and Arctic researchers as well as animations to discuss feedbacks in the Arctic climate system related to sea ice, the ocean, and clouds. It explains concepts such as albedo and positive and negative feedbacks. The narrative includes discussion of current research and a summary which explains why understanding feedbacks is important.

This interactive visualization adapted from NASA and the U.S. Geological Survey illustrates the concept of albedo, which is the measure of how much solar radiation is reflected from Earth's surface.

This video illustrates how atmospheric particles, or aerosols (such as black carbon, sulfates, dust, fog), can affect the energy balance of Earth regionally, and the implications for surface temperature warming and cooling.

An interactive simulation that allows the user to adjust mountain snowfall and temperature to see the glacier grow and shrink in response.

Pages