This simulation allows students to explore the change in sea surface pH levels with increasing CO2 levels.

The Climate Momentum Simulation allows users to quickly compare the resulting sea level rise, temperature change, atmospheric CO2, and global CO2 emissions from six different policy options: 1) Business As Usual, 2) March 2009 Country Proposals, 3) Flatten CO2 emissions by 2025, 4) 29% below 2009 levels by 2040, 5) 80% reduction of global fossil fuel plus a 90% reduction in land use emissions by 2050, and 6) 95 reduction of CO2 emissions by 2020). Based on the more complex C-ROADS simulator.

In this lesson, students examine and interpret varied observational datasets and are asked to determine whether the data supports or does not support the statement: climate change is occurring in Colorado.

In this activity students use NASA satellite data to study changes in temperature and snow-ice coverage in the South Beaufort Sea, Alaska. They will then correlate the data with USGS ground tracking of polar bears and relate their findings to global change, sea ice changes, and polar bear migration and survival.

In this activity, students calculate temperatures during a time in the geologic record when rapid warming occurred using a well known method called 'leaf-margin analysis.' Students determine the percentage of the species that have leaves with smooth edges, as opposed to toothed, or jagged, edges. Facsimiles of fossil leaves from two collection sites are examined, categorized, and the data is plugged into an equation to provide an estimate of paleotemperature for two sites in the Bighorn Basin. It also introduces students to a Smithsonian scientist who worked on the excavation sites and did the analysis.

In this hands-on activity, students explore whether rooftop gardens are a viable option for combating the urban heat island effect. Guiding question is: Can rooftop gardens reduce the temperature inside and outside houses?

In this video clip, Climate Central's Dr. Heidi Cullen explains that what we've known as "normals" for our climate, during the past decade, will very likely change soon. The new climate normal will provide key information for decisions we make in the future, ranging from what we plant, to what we pay for energy, and even to where we take a vacation.

This interactive map allows students to experiment with decadal average temperature projections. Overall temperatures are expected to rise throughout the century and this tool demonstrates those projected measurements.

This is a multi-media teaching tool to learn about climate change. The tool is comprised of stills, video clips, graphic representations, and explanatory text about climate science. Acclaimed photographer James Balog and his Extreme Ice team put this teaching tool together.

This NASA video explores the relationship between climate and agriculture, including the variability of climate change impacts that may occur in different regions and the effects of population growth and higher demands for food in areas that already struggle to supply food for the people. The video highlights the need for accurate, continuous, and accessible data and computer models from NASA satellites to track and predict the challenges farmers face as they adjust to a changing climate.