The activity follows a progression that examines the CO2 content of various gases, explores the changes in the atmospheric levels of CO2 from 1958 to 2000 from the Mauna Loa Keeling curve, and the relationship between CO2 and temperature over the past 160,000 years. This provides a foundation for examining individuals' input of CO2 to the atmosphere and how to reduce it.

Hands-on laboratory activity that allows students to investigate the effects of distance and angle on the input of solar radiation at Earth's surface, the role played by albedo, the heat capacity of land and water, and how these cause the seasons. Students predict radiative heating based on simple geometry and experiment to test their hypotheses.

This activity addresses naturally occurring climate change involving ENSO (El-NiÃo Southern Oscillation). In this activity, students play the role of a policy maker in Peru. First, they determine what sort of ENSO variation is occurring. Then, they must decide how to allocate Peru's resources to manage for possible weather-related problems.

In this Webquest activity, students assume roles of scientist, business leader, or policy maker. The students then collaborate as part of a climate action team and learn how society and the environment might be impacted by global warming. They explore the decision making process regarding issues of climate change, energy use, and available policy options. Student teams investigate how and why climate is changing and how humans may have contributed to these changes. Upon completion of their individual tasks, student teams present their findings and make recommendations that address the situation.

In this short video from ClimateCentral, host Jessica Harrop explains what evidence scientists have for claiming that recent global warming is caused by humans and is not just part of a natural cycle.

This multi-part activity introduces users to normal seasonal sea surface temperature (SST) variation as well as extreme variation, as in the case of El NiÃo and La NiÃa events, in the equatorial Pacific Ocean. Via a THREDDS server, users learn how to download seasonal SST data for the years 1982 to 1998. Using a geographic information system (GIS), they visualize and analyze that data, looking for the tell-tale SST signature of El Nino and La Nina events that occurred during that time period. At the end, students analyze a season of their own choosing to determine if an El NiÃo or La NiÃa SST pattern emerged in that year's data.

In this activity, students explore the increase in atmospheric carbon dioxide over the past 40 years with an interactive online model. They use the model and observations to estimate present emission rates and emission growth rates. The model is then used to estimate future levels of carbon dioxide using different future emission scenarios. These different scenarios are then linked by students to climate model predictions also used by the Intergovernmental Panel on Climate Change.

In this video scientists discuss possible rates of sea level rise, storms and resulting damage, rising temperatures and melting ice, and their collective effects on ecosystems.

This NASA animation presents the levels of atmospheric carbon dioxide over the last 400,000 years, last 1000 years and last 25 years at different time scales. The data come from the Lake Vostok ice cores (400,000 BC to about 4000 BC), Law Dome ice cores (1010 AD to 1975 AD) and Mauna Loa observations (1980 to 2005).

This activity develops students' understanding of climate by having them make in-depth examinations of historical climate patterns using both graphical and map image formats rather than presenting a general definition of climate. Students explore local climate in order to inform a pen pal what type of weather to expect during an upcoming visit. Students generate and explore a variety of graphs, charts, and map images and interpret them to develop an understanding of climate.

Pages