A sequence of five short animated videos that explain the properties of carbon in relationship to global warming, narrated by Robert Krulwich from NPR.

This video is one of a seven, Climate Change: Lines of Evidence series, produced by the the National Research Council. It outlines and explains what evidence currently exists in support of humans playing a role in contributing to the rise in atmospheric carbon dioxide levels.

In this short video, host Dr. Ryan interviews graduate student Amy Steiker at the Institute of Arctic and Alpine Research about her research, using isotopes of nitrous oxide, connecting human activity to greenhouse gas emissions.

In this video, a team of paleontologists, paleobotanists, soil scientists, and other researchers take to the field in Wyoming's Bighorn Basin to document how the climate, plants, and animals there changed during the Paleocene- Eocene Thermal Maximum (PETM). During this time a sudden, enormous influx of carbon flooded the ocean and atmosphere for reasons that are still unclear to scientists. The PETM is used as an analog to the current warming. The scientists' research may help inform our understanding of current increases in carbon in the atmosphere and ocean and the resulting impact on ecosystems.

This set of activities is about carbon sources, sinks, and fluxes among them - both with and without anthropogenic components.

This lesson plan engages students in a real-life exploration of climate change as it is affected by greenhouse emissions from vehicles. The aim of this activity is for students to realize the impact of vehicle use in their family and to give students the opportunity to brainstorm viable alternatives to this use.

This activity uses two interactive simulations to illustrate climate change, 1) at the micro/molecular level - modeling the impact of increasing concentrations of greenhouse gases in the atmosphere on surface temperature and 2) at the macro level - modeling changes in glacier thickness and flow as a result of rising surface temperature.

The activity follows a progression that examines the CO2 content of various gases, explores the changes in the atmospheric levels of CO2 from 1958 to 2000 from the Mauna Loa Keeling curve, and the relationship between CO2 and temperature over the past 160,000 years. This provides a foundation for examining individuals' input of CO2 to the atmosphere and how to reduce it.

This video highlights research conducted at Woods Hole on how heat absorbed by the ocean and changes of ocean chemistry from human activities could lead to a tipping point for marine life and ecosystems. Includes ice bath experiment that models the tipping point of Arctic sea ice.

This straightforward calculator provides conversions from one unit of energy to the equivalent amount of CO2 emission expected from using that amount.

Pages