This video addresses two ways in which black carbon contributes to global warming. When in the atmosphere, it absorbs sunlight and generates heat, warming the air. When deposited on snow and ice, black carbon changes the albedo of the surface. The video is effective in communicating about a problem frequently underrepresented in discussions of climate change and also public health.

This NASA video discusses the impacts of the sun's energy, Earth's reflectance, and greenhouse gases on the Earth System.

This video montage of spectacular NASA satellite images set to music shows different types of ice and ice features as well as descriptions of satellite-based measurements of ice cover. Text captioning describes how global ice cover is changing, and how this is measured.

In this activity, students use authentic Arctic climate data to unravel some causes and effects related to the seasonal melting of the snowpack and to further understand albedo.

The activity follows a progression that examines the CO2 content of various gases, explores the changes in the atmospheric levels of CO2 from 1958 to 2000 from the Mauna Loa Keeling curve, and the relationship between CO2 and temperature over the past 160,000 years. This provides a foundation for examining individuals' input of CO2 to the atmosphere and how to reduce it.

This short, engaging video created by NASA presents a complex topic via a simple analogy. The idea of positive and negative feedback is demonstrated by Daisyworld - a world with black and white flowers growing on it.

Students perform a lab to explore how the color of materials at Earth's surface affect the amount of warming. Topics covered include developing a hypothesis, collecting data, and making interpretations to explain why dark-colored materials become hotter.

In this series of activities students investigate the effects of black carbon on snow and ice melt in the Arctic. The lesson begins with an activity that introduces students to the concept of thermal energy and how light and dark surfaces reflect and absorb radiant energy differently. To help quantify the relationship between carbon
and ice melt, the wet lab activity has students create ice samples both with and without black carbon and then compare how they respond to radiant energy while considering implications for the Arctic.

This short video examines the recent melting ice shelves in the Antarctica Peninsula; the potential collapse of West Antarctic ice shelf; and how global sea levels, coastal cities, and beaches would be affected.

This lesson sequence guides students to learn about the geography and the unique characteristics of the Arctic, including vegetation, and people who live there. Students use Google Earth to explore the Arctic and learn about meteorological observations in the Arctic, including collecting their own data in hands-on experiments. This is the first part of a three-part curriculum about Arctic climate.

Pages