This video segment from 'Earth: The Operators' Manual' explores how we know that today's increased levels of CO2 are caused by humans burning fossil fuels and not by some natural process, such as volcanic out-gassing. Climate scientist Richard Alley provides a detailed step-by-step explanation that examines the physics and chemistry of different "flavors," or isotopes, of carbon in Earth's atmosphere.

This short cartoon video uses a simple baseball analogy (steroid use increases probability of hitting home runs) to explain how small increases in greenhouse gases can cause global temperature changes and increase the probability of extreme weather events.

This short activity provides a way to improve understanding of a frequently-published diagram of global carbon pools and fluxes. Students create a scaled 3-D visual of carbon reservoirs and the movement of carbon between reservoirs.

In this activity, students use authentic Arctic climate data to unravel some causes and effects related to the seasonal melting of the snowpack and to further understand albedo.

This video provides a good introduction to the field of attribution science. Beginning with an introduction to weather and climate, it describes how severe weather might be linked to climate change and the science behind attribution studies. It gives a good explanation behind how scientists use climate models to study whether severe weather events were influenced by climate change. It also discusses the question, "does climate change cause extreme weather?" and provides an introduction to the concepts of probability, causation, and correlation in regards to attribution science (how much climate change influenced an event verses normal variations in weather).

This interactive module allows students and educators to build models that explain how the Earth system works. The Click and Learn application can be used to show how Earth is affected by human activities and natural phenomena.

This qualitative graphic illustrates the various factors that affect the amount of solar radiation hitting or being absorbed by Earth's surface such as aerosols, clouds, and albedo.

In this audio slideshow, an ecologist from the University of Florida describes the radiocarbon dating technique that scientists use to determine the amount of carbon within the permafrost of the Arctic tundra. Understanding the rate of carbon released as permafrost thaws is necessary to understand how this positive feedback mechanism is contributing to climate change that may further increase global surface temperatures.

This video contains a visualization and explanation of the Arctic sea ice and how it has changed over the 25 years. In September 2012, the National Snow and Ice Data Center recorded the lowest extent of Arctic sea ice. The video discusses the climate importance of ice thickness, reflective properties, and self-reinforcing feedback mechanisms.

This video, from Yale Climate Connections, explores the 2014 melting of the West Antarctic ice sheet that captured headlines. Interviews, animations, and news broadcasts explore what the melting meant for both the future of some of the Antarctic glaciers and sea level rise, and informs the viewer how seafloor terrain influences the speed of ice sheet melt.

Pages