This Flash-based simulation explores the relationship between carbon emissions and atmospheric carbon dioxide using two main displays: (1) graphs that show the level of human-generated CO2 emissions, CO2 removals, and the level of CO2 in the atmosphere, and (2) a bathtub animation that shows the same information as the graphs. The bathtub simulation illustrates the challenges of reducing greenhouse gas concentrations in the atmosphere.

This 3-activity sequence addresses the question: "To what extent should coastal communities build or rebuild?" The activity uses social science and geoscience data to prepare an evidence-based response to the question, in targeted US coastal communities.

This is a semester-long jigsaw project in which students work in teams to explore the effects of energy resource development on local water resources, economics, and society. Students are presented with a contemporary energy resource development issue being debated in their community. They research the water, geological, economic, and social impact of the project, and then either defend or support the development proposal.

This hands-on activity introduces students to the process of fermenting different carbohydrate sources into ethanol. Teachers demonstrate yeasts' inability to metabolize certain food sources.

These five short videos are an introduction to the pros and cons of energy issues, including cost, choices, efficiency, environmental impact, and scale. The videos are segments of a feature documentary entitled, Switch: Discover the Future of Energy.

This animated visualization represents a time history of atmospheric carbon dioxide in parts per million (ppm) from 1979 to 2016, and then back in time to 800,000 years before the present.

This series of informative graphics provide a regional overview of US energy resources.

This activity engages students in the analysis of climate data to first find areas in the southern United States that are now close to having conditions in which the malaria parasite and its mosquito hosts thrive and then attempt to forecast when areas might become climatically suitable.

This activity describes the flow of carbon in the environment and focuses on how much carbon is stored in trees. It goes on to have students analyze data and make calculations about the amount of carbon stored in a set of trees at three sites in a wooded area that were to be cut down to build a college dormitory.

This short cartoon video uses a simple baseball analogy (steroid use increases probability of hitting home runs) to explain how small increases in greenhouse gases can cause global temperature changes and increase the probability of extreme weather events.