In this video, a PhD Student from the University of Maine explains how ice cores are used to study global climate change.

This video, from ClimateCentral, features a team of scientists from the Northern Greenland Eemian Ice Drilling Project who study atmospheric air bubbles trapped in an ice core. This work highlights a period in Greenland's ice sheet which began about 130,000 years ago and lasted about 10,000 years; a period known as the Eemian. The air bubbles from the ancient atmosphere reveal what happened with climate change over that period of time.

In this video, students see how data from the ice core record is used to help scientists predict the future of our climate. Video features ice cores extracted from the WAIS Divide, a research station on the West Antarctic Ice Sheet.

This activity focuses on reconstructing the Paleocene-Eocene Thermal Maximum (PETM) as an example of a relatively abrupt global warming period. Students access Integrated Ocean Drilling Program (IODP) sediment core data with Virtual Ocean software in order to display relevant marine sediments and their biostratigraphy.

In this activity, students will use oxygen isotope values of two species of modern coral to reconstruct ambient water temperature over a four-year period. They use Microsoft Excel, or similar application, to create a spreadsheet of temperature values calculated from the isotope values of the corals by means of an algebraic equation. Students then use correlation and regression techniques to determine whether isotope records can be considered to be good proxies for records of past temperatures.

This short video, adapted from NOVA, explains how Earth's position relative to the Sun might be responsible for the dramatic shift in the climate of what is now the Saharan nation of Djibouti.

In this activity, students reconstruct past climates using lake varves as a proxy to interpret long-term climate patterns. Students use data from sediment cores to understand annual sediment deposition and how it relates to weather and climate patterns.

This teaching activity is an introduction to how ice cores from the cryosphere are used as indicators and record-keepers of climate change as well as how climate change will affect the cryosphere.

This video features research conducted at University of Colorado's Institute of Arctic and Alpine Research, which studies isotopes of hydrogen trapped in ice cores to understand climate changes in the past.

This visualization graphically displays temperature and CO2 concentration in the atmosphere as derived from ice core data from 400,000 years ago to 1950. The data originates from UNEP GRID Arendal's graphic library of CO2 levels from Vostok ice core.

Pages